Sensory–sympathetic coupling in superior cervical ganglia after myocardial ischemic injury facilitates sympathoexcitatory action via P2X7 receptor
详细信息    查看全文
  • 作者:Jun Liu ; Guilin Li ; Haiying Peng ; Guihua Tu ; Fanjun Kong…
  • 关键词:P2X7 receptor ; Superior cervical ganglia ; Dorsal root ganglia ; Myocardial ischemic injury ; Sensory–sympathetic coupling
  • 刊名:Purinergic Signalling
  • 出版年:2013
  • 出版时间:September 2013
  • 年:2013
  • 卷:9
  • 期:3
  • 页码:463-479
  • 全文大小:1047KB
  • 参考文献:1. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H (2009) Purinergic signalling in the nervous system: an overview. Trends Neurosci 32:19-9 CrossRef
    2. Adams JE III, Bodor GS, Davila-Roman VG, Delmez JA, Apple FS, Ladenson JH, Jaffe AS (1993) Cardiac troponin I. A marker with high specificity for cardiac injury. Circulation 88:101-06 CrossRef
    3. Arbeloa J, Pérez-Samartín A, Gottlieb M, Matute C (2012) P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiol Dis 45:954-61 CrossRef
    4. Armour JA (1999) Myocardial ischaemia and the cardiac nervous system. Cardiovasc Res 41:41-4 CrossRef
    5. Bertinchant JP, Larue C, Pernel I, Ledermann B, Fabbro-Peray P, Beck L, Calzolari C, Trinquier S, Nigond J, Pau B (1996) Release kinetics of serum cardiac troponin I in ischemic myocardial injury. Clin Biochem 29(6):587-94 CrossRef
    6. Boehm S, Kubista H (2002) Fine tuning of sympathetic transmitter release via ionotropic and metabotropic presynaptic receptors. Pharmacol Rev 54:43-9 CrossRef
    7. Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358-04 CrossRef
    8. Brass D, Grably MR, Bronstein-Sitton N, Gohar O, Meir A (2012) Using antibodies against P2Y and P2X receptors in purinergic signaling research. Purinergic Signal 8(Suppl 1):S61–S79 CrossRef
    9. Burnstock G (2006) Purinergic P2 receptors as targets for novel analgesics. Pharmacol Ther 110:433-54 CrossRef
    10. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87:659-97 CrossRef
    11. Burnstock G, Krügel U, Abbracchio MP, Illes P (2011) Purinergic signalling: from normal behaviour to pathological brain function. Prog Neurobiol 95:229-74 CrossRef
    12. Colomar A, Marty V, Medina C, Combe C, Parnet P, Amedee T (2003) Maturation and release of interleukin-1beta by lipopolysaccharide-primed mouse Schwann cells require the stimulation of P2X7 receptors. J Biol Chem 278:30732-0740 CrossRef
    13. Cotrina ML, Nedergaard M (2009) Physiological and pathological functions of P2X7 receptor in the spinal cord. Purinergic Signal 5:223-32 CrossRef
    14. Dai Y, Fukuoka T, Wang H, Yamanaka H, Obata K, Tokunaga A, Noguchi K (2004) Contribution of sensitized P2X receptors in inflamed tissue to the mechanical hypersensitivity revealed by phosphorylated ERK in DRG neurons. Pain 108(3):258-66 CrossRef
    15. Erlinge D, Burnstock G (2008) P2 receptors in cardiovascular regulation and disease. Purinergic Signal 4:1-0 CrossRef
    16. Falahati A, Sharkey SW, Christensen D, McCoy M, Miller EA, Murakami MA, Apple FS (1999) Implementation of serum cardiac troponin I as marker for detection of acute myocardial infarction. Am Heart J 137:332-37 CrossRef
    17. Feldman AM, Combes A, Wagner D, Kadakomi T, Kubota T, Li Y, McTiernan C (2000) The role of tumor necrosis factor in the pathophysiology of heart failure. J Am Coll Cardiol 35:537-44 CrossRef
    18. Ferrari D, Pizzirani C, Adinolfi E, Lemoli RM, Curti A, Idzko M, Panther E, Virgilio FD (2006) The P2X7 receptor: a key player in IL-1 processing and release. J mmunol 176:3877-883
    19. Fu LW, Longhurst JC (2010) A new function for ATP. Am J Physiol Heart Circ Physiol 299:H1762–H1771 CrossRef
    20. Gourine AV, Wood JD, Burnstock G (2009) Purinergic signalling in autonomic control. Trends Neurosci 32:241-48 CrossRef
    21. Hanani M (2010) Satellite glial cells in sympathetic and parasympathetic ganglia: in search of function. Brain Res Rev 64:304-27 CrossRef
    22. Higuchi T, Stephan G, Nekolla RS, Poethko T, Yu M, Wester HJ, Casebier DS, Robinson SP, Botnar RM, Schwaiger M (2008) A new 18F-labeled myocardial PET tracer: myocardial uptake after permanent and transient coronary occlusion in rats. Nucl Med 49:1715-722 CrossRef
    23. Hukkanen M, Platts LAM, Corbett SA, Santavirta S, Polak JM, Konttinen YT (2002) Reciprocal age-related changes in GAP-43/B-50, substance P and calcitonin gene-related peptide (CGRP) expression in rat primary sensory neurones and their terminals in the dorsal horn of the spinal cord and subintima of the knee synovium. Neurosci Res 42:251-60 CrossRef
    24. Ioannidis JP, Karvouni E, Katritsis DG (2003) Mortality risk conferred by small elevations of creatine kinase-MB isoenzyme after percutaneous coronary intervention. J Am Coll Cardiol 42:1406-411 CrossRef
    25. Jardine DL, Charles CJ, Ashton RK, Bennett SI, Whitehead M, Frampton CM, Nicholls MG (2004) Increased cardiac sympathetic nerve activity following acute myocardial in a sheep model. J Physiol 565:325-33 CrossRef
    26. Li DP, Pan HL (2000) Responses of neurons in rostral ventrolateral medulla to activation of cardiac receptors in rats. Am J Physiol Heart Circ Physiol 279:H2549–H2557
    27. Li GL, Liu SM, Zhang J, Xu CS, Lin JR, Li X, Liang SD (2010) Increased sympathoexcitatory reflex induced by myocardial ischemic nociceptive signaling via P2X2/3 receptor in rat superior cervical ganglia. Neurochem Int 56(8):984-90 CrossRef
    28. Li GL, Liu SM, Yang Y, Xie JY, Liu J, Kong FJ, Tu GH, Wu RP, Li GD, Liang SD (2011) Effects of oxymatrine on sympathoexcitatory reflex induced by myocardial ischemic signaling mediated by P2X3 receptors in rat SCG and DRG. Brain Res Bull 84:419-24 CrossRef
    29. Li W, Knowlton D, Van Winkle DM, Habecker BA (2004) Infarction alters both the distribution and noradrenergic properties of cardiac sympathetic neurons. Am J Physiol Heart Circ Physiol 286:H2229–H2236 CrossRef
    30. Liang SD, Xu CS, Li GL, Gao Y (2010) P2X receptors and modulation of pain transmission: focus on effects of drugs and compounds used in traditional Chinese medicine. Neurochem Int 57:705-12 CrossRef
    31. Lieu TM, Kollarik M, Myers AC, Undem BJ (2011) Neurotrophin and GDNF family ligand receptor expression in vagal sensory nerve subtypes innervating the adult guinea pig respiratory tract. Am J Physiol Lung Cell Mol Physiol 300:L790–L798 CrossRef
    32. Matsmori A (2003) Roles of cytokines in the pathogenesis of heart failure. Nippon Rinsho 61:745-50
    33. Meller ST, Gebhart GF (1992) A critical review of the afferent pathways and the potential chemical mediators involved in cardiac pain. Neuroscience 48:501-4 CrossRef
    34. Pather N, Partab P, Singh B, Satyapal KS (2003) The sympathetic contribution to the cardiac plexus. Surg Radiol Anat 25(3-):210-15 CrossRef
    35. Ponnusamy M, Liu N, Gong R, Yan H, Zhuang S (2011) ERK pathway mediates P2X7 expression and cell death in renal interstitial fibroblasts exposed to necrotic renal epithelial cells. Am J Physiol Renal Physiol 301:F650–F659 CrossRef
    36. Ricciardi MJ, Davidson CJ, Gubernikoff G, Beohar N, Eckman LJ, Parker MA, Bonow RO (2003) Troponin I elevation and cardiac events after percutaneous coronary intervention. Am Heart J 145:2- CrossRef
    37. Seino D, Tokunaga A, Tachibana T, Yoshiya S, Dai Y, Obata K, Yamanaka H, Kobayashi K, Noguchi K (2006) The role of ERK signaling and the P2X receptor on mechanical pain evoked by movement of inflamed knee joint. Pain 123:93-03 CrossRef
    38. Shao LJ, Liang SD, Li GL, Xu CS, Zhang CP (2007) Exploration of P2X3 in the rat stellate ganglia after myocardial ischemia. Acta Histochem 109:330-37 CrossRef
    39. Shinder V, Govrin-Lippmann R, Cohen S, Belenky M, Ilin P, Fried K, Wilkinson HA, Devor M (1999) Structural basis of sympathetic–sensory coupling in rat and human dorsal root ganglia following peripheral nerve injury. J Neurocytol 28:743-61 CrossRef
    40. Skaper SD, Debetto P, Giusti P (2010) The P2X7 purinergic receptor: from physiology to neurological disorders. FASEB J 24:337-45 CrossRef
    41. Sperlagh B, Vizi ES, Wirkner K, Illes P (2006) P2X7 receptors in the nervous system. Prog Neurobiol 78:327-46 CrossRef
    42. Stritesky M, Dobias M, Demes R, Semrad M, Poliachova E, Cermak T, Charvat J, Malek I (2006) Endoscopic thoracic sympathectomy—its effect in the treatment of refractory angina pectoris. Interact Cardiovasc Thorac Surg 5:464-68 CrossRef
    43. Swissa M, Zhou SM, Gonzalez-Gomez I, Chang CM, Lai AC, Cates AW, Fishbein MC, Karagueuzian HS, Chen PS, Chen LS (2004) Long-term subthreshold electrical stimulation of the left stellate ganglion and a canine model of sudden cardiac death. J Am Coll Cardiol 43:858-64 CrossRef
    44. Thames MD, Kinugawa T, Dibner-Dunlap ME (1993) Reflex sympathoexcitation by cardiac afferents during myocardial ischemia: role of adenosine. Circulation 87:1698-04 CrossRef
    45. Verderio C, Matteoli M (2011) ATP in neuron–glia bidirectional signaling. Brain Res Rev 66:106-14 CrossRef
    46. Verkhratsky A, Parpura V, Rodríguez JJ (2011) Where the thoughts dwell: the physiology of neuronal–glial “diffuse neural net- Brain Res Rev 66:133-51 CrossRef
    47. Vassort G (2001) Adenosine 5-triphosphate: a P2-purinergic agonist in the myocardium. Physiol Rev 81:767-06
    48. Vizi ES, Liang SD, Sperlágh B, Kittel A, Jurányi Z (1997) Studies on the release and extracellular metabolism of endogenous ATP in rat superior cervical ganglion: support for neurotransmitter role of ATP. Neuroscience 79:893-03 CrossRef
    49. Wan F, Li GL, Liu SM, Zhu GC, Xu SH, Lin JR, Zhang J, Li X, Liang SD (2010) P2X2/3 receptor activity of rat nodose ganglion neurons contributing to myocardial ischemic nociceptive signaling. Auton Neurosci: Basic Clin 158:58-4 CrossRef
    50. Wang YX, Li GL, Liang SD, Wan F, Xu CS, Gao Y, Liu SM, Lin JR (2009) Expression of P2X2 and P2X3 receptors in rat nodose neurons after myocardial ischemia injury. Auton Neurosci 145:71-5 CrossRef
    51. Wang YX, Li GL, Liang SD, Zhang AX, Xu CS, Gao Y, Zhang CP, Wan F (2008) Role of P2X3 receptor in myocardial ischemia injury and nociceptive sensory transmission. Auton Neurosci 139:30-7 CrossRef
    52. Watters JJ, Sommer JA, Pfeiffer ZA, Prabhu U, Guerra AN, Bertics PJ (2002) A differential role for the mitogen-activated protein kinases in lipopolysaccharide signaling: the MEK/ERK pathway is not essential for nitric oxide and interleukin 1beta production. J Biol Chem 277:9077-087 CrossRef
    53. Weick M, Cherkas PS, H?rtig W, Pannicke T, Uckermann O, Bringmann A, Tal M, Reichenbach A, Hanani M (2003) P2 receptors in satellite glial cells in trigeminal ganglia of mice. Neuroscience 120:969-77 CrossRef
    54. Xiang Z, Bo X, Burnstock G (1998) Localization of ATP-gated P2X receptor immunoreactivity in rat sensory and sympathetic ganglia. Neurosci Lett 256:105-08 CrossRef
    55. Xie W, Strong JA, Zhang JM (2010) Increased excitability and spontaneous activity of rat sensory neurons following in vitro stimulation of sympathetic fiber sprouts in the isolated dorsal root ganglion. Pain 151:447-59 CrossRef
    56. Yan Z, Li S, Liang Z, Tomic M, Stojilkovic SS (2012) The P2X7 receptor channel pore dilates under physiological ion conditions. J Gen Physiol 132:563-73 CrossRef
    57. Yao H, Zhang Y, He F, Wang C, Xiao Z, Zou J, Wang F, Liu Z (2012) Short hairpin RNA targeting 2B gene of coxsackievirus B3 exhibits potential antiviral effects both in vitro and in vivo. BMC Infect Dis 12:177 CrossRef
    58. Zhang CP, Liang SD, Li GL, Xu CS, Gao Y, Wang YX, Zhang AX, Wan F (2007) The involvement of P2X3 receptors of rat sympathetic ganglia in cardiac nociceptive transmission. J Physiol Biochem 63(3):249-58 CrossRef
    59. Zhang CP, Li GL, Liang SD, Xu CS, Zhu GC, Wang YX, Zhang AX, Wan F (2008) Myocardial ischemic nociceptive signaling mediated by P2X3 receptor in rat stellate ganglion neurons. Brain Res Bull 75:77-2 CrossRef
    60. Zhang X, Chen Y, Wang C, Huang LY (2007) Neuronal somatic ATP release triggers neuron-satellite glial cell communication in dorsal root ganglia. Proc Natl Acad Sci USA 104:9864-869 CrossRef
  • 作者单位:Jun Liu (1)
    Guilin Li (1)
    Haiying Peng (1)
    Guihua Tu (1)
    Fanjun Kong (1)
    Shuangmei Liu (1)
    Yun Gao (1)
    Hong Xu (1)
    Shuyi Qiu (1)
    Bo Fan (1)
    Qicheng Zhu (1)
    Shicheng Yu (1)
    Chaoran Zheng (1)
    Bing Wu (1)
    Lichao Peng (1)
    Miaomiao Song (1)
    Qin Wu (1)
    Guodong Li (1)
    Shangdong Liang (1) (2)

    1. Department of Physiology, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
    2. Key Laboratory of Basic Medicine, Medical College of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
  • ISSN:1573-9546
文摘
P2X receptors participate in cardiovascular regulation and disease. After myocardial ischemic injury, sensory–sympathetic coupling between rat cervical DRG nerves and superior cervical ganglia (SCG) facilitated sympathoexcitatory action via P2X7 receptor. The results showed that after myocardial ischemic injury, the systolic blood pressure, heart rate, serum cardiac enzymes, IL-6, and TNF-α were increased, while the levels of P2X7 mRNA and protein in SCG were also upregulated. However, these alterations diminished after treatment of myocardial ischemic (MI) rats with the P2X7 antagonist oxATP. After siRNA P2X7 in MI rats, the systolic blood pressure, heart rate, serum cardiac enzymes, the expression levels of the satellite glial cell (SGC) or P2X7 were significantly lower than those in MI group. The phosphorylation of ERK 1/2 in SCG participated in the molecular mechanism of the sympathoexcitatory action induced by the myocardial ischemic injury. Retrograde tracing test revealed the sprouting of CGRP or SP sensory nerves (the markers of sensory afferent fibers) from DRG to SCG neurons. The upregulated P2X7 receptor promoted the activation of SGCs in SCG, resulting in the formation of sensory–sympathetic coupling which facilitated the sympathoexcitatory action. P2X7 antagonist oxATP could inhibit the activation of SGCs and interrupt the formation of sensory–sympathetic coupling in SCG after the myocardial ischemic injury. Our findings may benefit the treatment of coronary heart disease and other cardiovascular diseases.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700