Bone Structural Changes and Estimated Strength After Gastric Bypass Surgery Evaluated by HR-pQCT
详细信息    查看全文
  • 作者:Katrine Diemer Frederiksen ; Stine Hanson ; Stinus Hansen…
  • 关键词:Roux ; en ; Y gastric bypass ; Obesity ; Bone microarchitecture ; Bone strength ; HR ; pQCT
  • 刊名:Calcified Tissue International
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:98
  • 期:3
  • 页码:253-262
  • 全文大小:466 KB
  • 参考文献:1.Sjöström L, Lindroos A, Peltonen M, Torgerson J, Bouchard C, Carlsson B et al (2004) Lifestyle, diabetes and cardiovascular Risk Factors 10 years after bariatric surgery. N Engl J Med 351(26):2683–2693CrossRef PubMed
    2.Davies SW, Efird JT, Guidry CA, Penn RI, Sawyer RG, Schirmer BD et al (2015) Twenty-first century weight loss: banding versus bypass. Surg Endosc 29(4):947–954CrossRef PubMed
    3.Hewitt S, Søvik TT, Aasheim ET, Kristinsson J, Jahnsen J, Birketvedt GS et al (2013) Secondary hyperparathyroidism, vitamin D sufficiency, and serum calcium 5 years after gastric bypass and duodenal switch. Obes Surg 23(3):384–390CrossRef PubMed
    4.Reid IR (2010) Fat and bone. Arch Biochem Biophys 503(1):20–27CrossRef PubMed
    5.Frederich RC, Hamann A, Anderson S, Löllmann B, Lowell BB, Flier JS (1995) Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med 1(12):1311–1314CrossRef PubMed
    6.Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y et al (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1(11):1155–1161CrossRef PubMed
    7.Chen XX, Yang T (2015) Roles of leptin in bone metabolism and bone diseases. J Bone Miner Metab 33(5):474–485
    8.Lenchik L, Register TC, Hsu FC, Lohman K, Nicklas BJ, Freedman BI et al (2003) Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone 33(4):646–651CrossRef PubMed
    9.Carrasco F, Ruz M, Rojas P, Csendes A, Rebolledo A, Codoceo J et al (2009) Changes in bone mineral density, body composition and adiponectin levels in morbidly obese patients after bariatric surgery. Obes Surg 19(1):41–46CrossRef PubMed
    10.Reid IR (2008) Relationships between fat and bone. Osteoporos Int 19(5):595–606CrossRef PubMed
    11.Spector ER, Smith SM, Sibonga JD (2009) Skeletal effects of long-duration head-down bed rest. Aviat Space Environ Med 80(5):23–28CrossRef
    12.LeBlanc AD, Spector ER, Evans HJ, Sibonga JD (2007) Skeletal responses to space flight and the bed rest analog: a review. J Musculoskelet Neuronal Interact 7(1):33–47PubMed
    13.Beck TJ, Petit MA, Wu G, LeBoff MS, Cauley JA, Chen Z (2009) Does obesity really make the femur stronger? BMD, geometry, and fracture incidence in the women’s health initiative-observational study. J Bone Miner Res 24(8):1369–1379PubMedCentral CrossRef PubMed
    14.Prieto-Alhambra D, Premaor MO, Fina Avilés F, Hermosilla E, Martinez-Laguna D, Carbonell-Abella C et al (2012) The association between fracture and obesity is site-dependent: a population-based study in postmenopausal women. J Bone Miner Res 27(2):294–300CrossRef PubMed
    15.Gnudi S, Sitta E, Lisi L (2009) Relationship of body mass index with main limb fragility fractures in postmenopausal women. J Bone Miner Metab 27(4):479–484CrossRef PubMed
    16.Nielson CM, Marshall LM, Adams AL, LeBlanc ES, Cawthon PM, Ensrud K et al (2011) BMI and fracture risk in older men: the osteoporotic fractures in men study (MrOS). J Bone Miner Res 26(3):496–502PubMedCentral CrossRef PubMed
    17.Lalmohamed A, de Vries F, Bazelier MT, Cooper A, van Staa T-P, Cooper C et al (2012) Risk of fracture after bariatric surgery in the United Kingdom: population based, retrospective cohort study. BMJ 345:e5085PubMedCentral CrossRef PubMed
    18.Nakamura KM, Haglind EGC, Clowes JA, Achenbach SJ, Atkinson EJ, Melton LJ et al (2014) Fracture risk following bariatric surgery: a population-based study. Osteoporos Int 25(1):151–158PubMedCentral CrossRef PubMed
    19.Mahdy T, Atia S, Farid M, Adulatif A (2008) Effect of Roux-en Y gastric bypass on bone metabolism in patients with morbid obesity: mansoura experiences. Obes Surg 18(12):1526–1531CrossRef PubMed
    20.Vilarrasa N, Gómez JM, Elio I, Gómez-Vaquero C, Masdevall C, Pujol J et al (2009) Evaluation of bone disease in morbidly obese women after gastric bypass and risk factors implicated in bone loss. Obes Surg 19(7):860–866CrossRef PubMed
    21.Nelson L, Gulenchyn KY, Atthey M, Webber CE (2010) Is a fixed value for the least significant change appropriate? J Clin Densitom 13(1):18–23CrossRef PubMed
    22.Bolotin HH (2007) DXA in vivo BMD methodology: an erroneous and misleading research and clinical gauge of bone mineral status, bone fragility, and bone remodelling. Bone 41(1):138–154CrossRef PubMed
    23.Yu EW, Thomas BJ, Brown JK, Finkelstein JS (2012) Simulated increases in body fat and errors in bone mineral density measurements by DXA and QCT. J Bone Miner Res 27(1):119–124CrossRef PubMed
    24.Yu EW, Bouxsein ML, Roy AE, Baldwin C, Cange A, Neer RM et al (2014) Bone loss after bariatric surgery: discordant results between DXA and QCT bone density. J Bone Miner Res 29(3):542–550PubMedCentral CrossRef PubMed
    25.Evans EM, Mojtahedi MC, Kessinger RB, Misic MM (2006) Simulated change in body fatness affects Hologic QDR 4500A whole body and central DXA bone measures. J Clin Densitom. 9(3):315–322CrossRef PubMed
    26.Stein EM, Carrelli A, Young P, Bucozsky M, Zhang C, Schrope B et al (2013) Bariatric Surgery Results in Cortical Bone Loss. J Clin Endocrinol Metab 98(2):541–549PubMedCentral CrossRef PubMed
    27.Yu EW, Bouxsein ML, Putman MS, Monis EL, Roy AE, Pratt JS a., et al. (2015) Two-year changes in bone density after Roux-en-Y gastric bypass surgery. J Clin Endocrinol Metab 100(4):1452–1459
    28.Laib A, Rüegsegger P (1999) Calibration of trabecular bone structure measurements of in vivo three-dimensional peripheral quantitative computed tomography with 28-microm-resolution microcomputed tomography. Bone 24(1):35–39CrossRef PubMed
    29.Laib A, Hildebrand T, Häuselmann HJ, Rüegsegger P (1997) Ridge number density: a new parameter for in vivo bone structure analysis. Bone 21(6):541–546CrossRef PubMed
    30.Müller R, Hildebrand T, Häuselmann HJ, Rüegsegger P (1996) In vivo reproducibility of three-dimensional structural properties of noninvasive bone biopsies using 3D-pQCT. J Bone Miner Res 11(11):1745–1750CrossRef PubMed
    31.Boutroy S, Bouxsein ML, Munoz F, Delmas PD (2005) In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 90(12):6508–6515CrossRef PubMed
    32.Pauchard Y, Liphardt A-M, Macdonald HM, Hanley DA, Boyd SK (2012) Quality control for bone quality parameters affected by subject motion in high-resolution peripheral quantitative computed tomography. Bone 50(6):1304–1310CrossRef PubMed
    33.Laib A, Häuselmann HJ, Rüegsegger P (1998) In vivo high resolution 3D-QCT of the human forearm. Technol Heal care 6(5–6):329–337
    34.Burghardt AJ, Buie HR, Laib A, Majumdar S, Boyd SK (2010) Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone 47(3):519–528PubMedCentral CrossRef PubMed
    35.Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK (2010) Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res. 25(4):882–890PubMed
    36.Pistoia W, van Rietbergen B, Lochmüller E-M, Lill CA, Eckstein F, Rüegsegger P (2002) Estimation of distal radius failure load with micro-finite element analysis models based on three-dimensional peripheral quantitative computed tomography images. Bone. 30(6):842–848CrossRef PubMed
    37.Hansen S, Hauge EM (2013) Beck Jensen JE, Brixen K. Differing effects of PTH 1-34, PTH 1-84, and zoledronic acid on bone microarchitecture and estimated strength in postmenopausal women with osteoporosis: an 18-month open-labeled observational study using HR-pQCT. J Bone Miner Res 28(4):736–745CrossRef PubMed
    38.Fleischer J, Stein EM, Bessler M, Della Badia M, Restuccia N, Olivero-Rivera L et al (2008) The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. J Clin Endocrinol Metab 93(10):3735–3740PubMedCentral CrossRef PubMed
    39.Pereira FA, Foss MC (2007) Impact of marked weight loss induced by bariatric surgery on bone mineral density and remodeling. Braz J Med Biol Res 40:509–517CrossRef PubMed
    40.Vilarrasa N, San José P, García I, Gómez-Vaquero C, Miras PM, de Gordejuela AGR et al (2011) Evaluation of bone mineral density loss in morbidly obese women after gastric bypass: 3-year follow-up. Obes Surg 21(4):465–472CrossRef PubMed
  • 作者单位:Katrine Diemer Frederiksen (1)
    Stine Hanson (1)
    Stinus Hansen (1) (2)
    Kim Brixen (1)
    Jeppe Gram (3)
    Niklas Rye Jørgensen (2) (4)
    René Klinkby Støving (1) (5)

    1. Department of Endocrinology, Odense University Hospital, Kløvervænget 6, 1.sal, 5000, Odense C, Denmark
    2. Institute of Clinical Research, University of Southern Denmark, J.B. Winsløwsvej 19, 5000, Odense C, Denmark
    3. Department of Endocrinology, Hospital of Southwest Denmark, Finsensgade 35, 6700, Esbjerg, Denmark
    4. Research Center for Ageing and Osteoporosis, Department of Clinical Biochemistry, Rigshospitalet, Ndr. Ringvej 57, 2600, Glostrup, Denmark
    5. Center for Eating Disorders, Odense University Hospital, Kløvervænget 6, 8. sal, 5000, Odense C, Denmark
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Biochemistry
    Endocrinology
    Orthopedics
    Cell Biology
  • 出版者:Springer New York
  • ISSN:1432-0827
文摘
Roux-en-Y gastric bypass surgery (RYGB) is an effective treatment of morbid obesity, with positive effects on obesity-related complications. The treatment is associated with bone loss, which in turn might increase fracture risk. The aim of this study was to evaluate changes in bone mineral density (BMD) and bone architecture assessed using dual-energy X-ray absorptiometry (DXA) and high-resolution peripheral quantitative computed tomography (HR-pQCT), 6 and 12 months after RYGB, and correlate them to changes in selected biochemical markers. A prospective cohort study included 25 morbidly obese patients (10 males, 15 females). Patients were examined with DXA of the hip and spine, HR-pQCT of radius and tibia, and blood sampling before and 6 and 12 months after RYGB. Patients lost in average 33.5 ± 12.1 kg (25.8 ± 8.5 %) in 12 months. In tibia, we found significant loss of total, cortical and trabecular volumetric BMD after 12 months (all p < 0.001). Microarchitectural changes involved lower trabecular number, increased trabecular separation, and network inhomogeneity along with thinning of the cortex. Estimated bone failure load was decreased after 12 months (p = 0.005). We found only minor changes in radius. Results demonstrate significant alterations of bone microarchitecture suggesting an accelerated endosteal resorption along with disintegration of the trabecular structure which resulted in a loss of estimated bone strength in tibia. Such changes may underlie the recently reported increased risk of fracture in bariatric patients after surgery. We only observed bone structural changes in the weight-bearing bone, which indicates that mechanical un-loading is the primary mediator. Keywords Roux-en-Y gastric bypass Obesity Bone microarchitecture Bone strength HR-pQCT

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700