Simulation of snowmelt runoff in ungauged basins based on MODIS: a case study in the Lhasa River basin
详细信息    查看全文
  • 作者:Linghua Qiu (1)
    Jinjun You (2)
    Fei Qiao (3)
    Dingzhi Peng (1)
  • 关键词:Lhasa River basin ; MODIS ; SRM ; Snowmelt runoff
  • 刊名:Stochastic Environmental Research and Risk Assessment (SERRA)
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:28
  • 期:6
  • 页码:1577-1585
  • 全文大小:2,044 KB
  • 参考文献:1. Andreadis KM, Lettenmaier DP (2006) Assimilating remotely sensed snow observations into a macroscale hydrological model. Adv Water Resour 29:872-86. doi:10.1016/j.advwatres.2005.08.004 CrossRef
    2. Archer DR, Fowler HJ (2008) Using meteorological data to forecast seasonal runoff on the River Jhelum, Pakistan. J Hydrol 361(1-):10-3. doi:10.1016/j.jhydrol.2008.07.017 CrossRef
    3. Chen H, Xiang TT, Zhou X, Xu CY (2012) Impacts of climate change on the Qingjiang Watershed’s runoff change trend in China. Stoch Environ Res Risk Assess 26(6):847-58. doi:10.1007/s00477-011-0524-2 CrossRef
    4. Clark MP et al (2006) Assimilation of snow covered area information into hydrologic and land-surface models. Adv Water Resour 29(8):1209-221. doi:10.1016/j.advwatres.2005.10.001 CrossRef
    5. David CG, Danny M (2005) Spatially distributed energy balance snowmelt modeling in a mountainous river basin: estimation of meteorological inputs and verification of model results. J Hydrol 315(1-):126-53. doi:10.1016/j.jhydrol.2005.03.026
    6. Dincer T, Payne BR, Florkows T, Martinec J, Tongiorg E (1970) Snowmelt runoff from measurements of tritium and oxygen-18. Water Resour Res 6(1):110-24. doi:10.1029/WR006i001p00110 CrossRef
    7. Dou Y, Chen X, Bao AM, Li LH (2011) The simulation of snowmelt runoff in the ungauged Kaidu River Basin of TianShan Mountains, China. Environ Earth Sci 62(5):1039-045. doi:10.1007/s12665-010-0592-5 CrossRef
    8. Ferguson RI (1999) Snowmelt Runoff Models. Prog Phys Geogr 23(2):205-27. doi:10.1177/030913339902300203 CrossRef
    9. Gelfan A (2010) Extreme snowmelt floods: frequency assessment and analysis of genesis on the basis of the dynamic-stochastic approach. J Hydrol 388(1-):85-9. doi:10.1016/j.jhydrol.2010.04.031 CrossRef
    10. Johnson MS et al (2003) Application of two hydrologic models with different runoff mechanisms to a hillslope dominated watershed in the northeastern US: a comparison of HSPF and SMR. J Hydrol 284(1-):57-6. doi:10.1016/j.jhydrol.2003.07.005 CrossRef
    11. Kriauciuniene J, Jakimavicius D, Sarauskiene D, Kaliatka T (2013) Estimation of uncertainty sources in the projections of Lithuanian river runoff. Stoch Environ Res Risk Assess 27(4):769-84. doi:10.1007/s00477-012-0608-7 CrossRef
    12. Kuchment LS, Gelfan AN (1996) The determination of the snowmelt rate and the meltwater outflow from a snowpack for modelling river runoff generation. J Hydrol 179(1-):23-6. doi:10.1016/0022-1694(95)02878-1 CrossRef
    13. Legates DR, McCabe GJ (1999) Evaluating the use of ‘goodness-of-fit-measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233-41. doi:10.1029/1998WR900018 CrossRef
    14. Martinec J, Rango A (1986) Parameter values for Snowmelt Runoff Modeling. J Hydrol 84(3-):197-19. doi:10.1016/0022-1694(86)90123-X CrossRef
    15. Martinec J, Rango A, Roberts R (2007) The Snowmelt Runoff Model (SRM) User’s Manual. WinSRM Version 1.11. / New Mexico State University, New Mexico, USA
    16. Micovic Z, Quick MC (1999) A rainfall and Snowmelt Runoff Modelling approach to flow estimation at ungauged sites in British Columbia. J Hydrol 226(1-):101-20. doi:10.1016/S0022-1694(99)00172-9 CrossRef
    17. Molotch NP, Margulis SA (2008) Estimating the distribution of snow water equivalent using remotely sensed snow cover data and a spatially distributed snowmelt model: a multi-resolution, multi-sensor comparison. Adv Water Resour 31(11):1503-514. doi:10.1016/j.advwatres.2008.07.017 CrossRef
    18. Muleta MK, Nicklow JW (2005) Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model. J Hydrol 306(1-):127-45. doi:10.1016/j.jhydrol.2004.09.005 CrossRef
    19. Nagler T, Rott H, Malcher P, Müller F (2008) Assimilation of meteorological and remote sensing data for snowmelt runoff forecasting. Remote Sens Environ 112(4):1408-420. doi:10.1016/j.rse.2007.07.006 CrossRef
    20. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I. A discussion of principles. J Hydrol 10:282-90. doi:10.1016/0022-1694(70)90255-6 CrossRef
    21. Patricio V, Ximena V, Cartes M (2006) Estimating snowmelt volume using snow cover distribution modeling. 5th FRIEND World Conference. Climate variability and change-hydrological impacts. IAHS, Havana, Cuba
    22. Peng D Z, Du Y (2010) Comparative analysis of several Lhasa River basin flood forecast models in Yarlung Zangbo River. iCBBE 2010, Chengdu, China. doi:10.1109/ICBBE.2010.5515463
    23. Peng DZ, Xiong LH, Guo SL et al (2004) Advances in applications of MODIS to hydrology and water resources. Adv Water Sci 15(5):683-88 (In Chinese)
    24. Qiu J (2008) The third pole. Nature 454:393-96. doi:10.1038/454393a CrossRef
    25. Saltelli A, Tarantola S, Chan K (1999) A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41(1):39-6. doi:10.1080/00401706.1999.10485594 CrossRef
    26. Shi Y, Gao XJ, Zhang DF, Giorgi F (2011) Climate change over the Yarlung Zangbo-Brahmaputra River basin in the 21st century as simulated by a high resolution regional climate model. Q Int 244(2):159-68. doi:10.1016/j.quaint.2011.01.041 CrossRef
    27. Siderius C et al (2013) Snowmelt contributions to discharge of the Ganges. Sci Total Environ. doi:10.1016/j.scitotenv.2013.05.084
    28. Sirguey P, Mathieu R, Arnaud Y (2009) Subpixel monitoring of the seasonal snow cover with MODIS at 250?m spatial resolution in the Southern Alps of New Zealand: Methodology and accuracy assessment. Remote Sens Environ 113(1):160-81. doi:10.1016/j.rse.2008.09.008 CrossRef
    29. Smith TJ, Marshall LA (2010) Exploring uncertainty and model predictive performance concepts via a modular snowmelt-runoff modeling framework. Environ Model Softw 25(6):691-01. doi:10.1016/j.envsoft.2009.11.010 CrossRef
    30. Stone R, Dutton E, Harris J, Longenecker D (2002) Earlier spring snowmelt in northern Alaska as an indicator of climate change. J Geophys Res. doi:10.1029/2000JD000286
    31. Su JJ et al (2011) Effects of snowmelt on phosphorus and sediment losses from agricultural watersheds in Eastern Canada. Agric Water Manage 98(5):867-76. doi:10.1016/j.agwat.2010.12.013 CrossRef
    32. Wang GX, Hu HC, Li TB (2009) The influence of freeze-thaw cycles of active soil layer on surface runoff in a permafrost watershed. J Hydrol 375(3-):438-49. doi:10.1016/j.jhydrol.2009.06.046 CrossRef
    33. WMO (1986) Intercomparison of models of snowmelt runoff. Switzerland, Geneva
    34. WMO (1992) Simulated real-time intercomparison of hydrological models. Switzerland, Geneva
    35. Woo MK, Thorne R (2006) Snowmelt contribution to discharge from a large mountainous catchment in subarctic Canada. Hydrol Proc 20(10):2129-139. doi:10.1002/hyp.6205 CrossRef
    36. Yang DQ, Zhao YY, Armstrong R, Robinson D (2009) Yukon River streamflow response to seasonal snow cover changes. Hydrol Proc 23(1):109-21. doi:10.1002/hyp.7216 CrossRef
    37. Ye A, Duan Q, Zeng H, Lin L, Caiyun W (2010) A distributed time-variant gain hydrological model based on remote sensing. J Res Ecol 1(3):222-30. doi:10.3969/j.issn.1674-764x.2010.03.005
    38. You QL, Kang SC, Tian KM et al (2001) Preliminary analysis on climatic features at Mt. Nyainqentanglha, Tibetan Plateau. J Mt Sci 25(4):497-04 (In Chinese)
    39. Zhang YC, Li BL, Bao AM et al (2006a) Study on snowmelt runoff simulation in the Kaidu River basin. Sci China D 1(50):26-5. doi:10.1007/s11430-007-5007-4
    40. Zhang Y, Liu SY, Ding YJ (2006b) Spatial variation of degree-day factors on the observed glaciers in Western China. Acta Geographica Sinica 61(1):89-8 (In Chinese)
    41. Zhang X, Srinivasan R, Debele B, Hao F (2008) Runoff simulation of the headwaters of the Yellow River using the SWAT model with three snowmelt algorithms. J Am Water Resour Assoc 44:48-1. doi:10.1111/j.1752-1688.2007.00137.x CrossRef
    42. Zhou XB, Xie HJ, Hendrickx J (2005) Statistical evaluation of remotely sensed snow-cover products with constraints from streamflow and SNOTEL measurements. Remote Sens Environ 94(2):214-31. doi:10.1016/j.rse.2004.10.007 CrossRef
  • 作者单位:Linghua Qiu (1)
    Jinjun You (2)
    Fei Qiao (3)
    Dingzhi Peng (1)

    1. College of Water Sciences, Beijing Normal University, Beijing, China
    2. State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China
    3. Chinese Research Academy of Environmental Sciences, Beijing, China
  • ISSN:1436-3259
文摘
It is theoretically and practically significant to conduct snowmelt runoff simulations and hydrological research for high-elevation regions. The Lhasa River basin, an ungauged basin, is a typical alpine headwater region where snowmelt runoff contributes significantly to its stream flow. In this study, the snowmelt period, defined by the snow cover curves obtained at different altitudinal zones based on Moderate-Resolution Imaging Spectroradiometer (MODIS) and Digital Elevation Model data, occurred from March 6 to July 12 in the basin. The snowmelt processes were simulated with the Snowmelt Runoff Model (SRM) in 2002 and 2003 for calibration and validation, respectively. The coefficients of determination (R 2 ) were 0.86 and 0.87 for calibration and validation, respectively, and the Nash–Sutcliffe coefficients were both 0.80, which indicate reasonable performances in simulating hydrological processes in the Lhasa River basin. The simulated snowmelt at altitudes below 5,000?m accounts for most of the snowmelt. And the simulated snowmelt runoff contributed 3-?% to the total runoff. The sensitivity of individual parameters was analysed and ranked as follows: α and γ?>?C S ?>?C R ?>?T crit . In short, the SRM based on MODIS remotely sensed data performed well for the ungauged Lhasa River basin.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700