Electrodeposited conductive polymers for controlled drug release: polypyrrole
详细信息    查看全文
  • 作者:B. Alshammary ; F. C. Walsh ; P. Herrasti
  • 关键词:Conducting polymer ; Electroactive ; Drug delivery ; Nanocomposites
  • 刊名:Journal of Solid State Electrochemistry
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:20
  • 期:4
  • 页码:839-859
  • 全文大小:943 KB
  • 参考文献:1.Unsworth J, Lunn BA, Innis PC, Jin Z, Kaynak A, Booth NG (1992) Conducting polymer electronics. J Intell Mater Syst Struct 3:380–395CrossRef
    2.Wang J-Z, Chou S-L, Liu H, Wang GX, Zhong C, Chew SY, Liu HK (2009) Highly flexible and bendable free-standing thin film polymer for battery application. Mater Lett 63:2352–2354CrossRef
    3.Cho J, Shin K-H, Jang J (2010) Micropatterning of conducting polymer tracks on plasma treated flexible substrate using vapor phase polymerization-mediated inkjet printing. Synth Met 160:1119–1125CrossRef
    4.Gonzalez-Macia L, Morrin A, Smyth MR, Killard AJ (2010) Advanced printing and deposition methodologies for the fabrication of biosensors and biodevices. Analyst 135:845–867CrossRef
    5.Ummartyotin S, Wu C, Sain M, Manuspiya H (2011) Deposition of PEDOT: PSS nanoparticles as a conductive microlayer anode in OLED devices by desktop inkjet printer. J Nanomater 2011:606714CrossRef
    6.Svirskis D, Travas-Sejdic J, Rodgers A, Garg S (2010) Electrochemically controlled drug delivery based on intrinsically conducting polymers. J Control Release 146:6–15CrossRef
    7.Miller LL, Lau ANK, Miller EK (1982) Electrically stimulated release of neurotransmitters from a surface. An analog of the presynaptic terminal. J Am Chem Soc 104:5242–5244CrossRef
    8.Zinger B, Miller LL (1984) Timed release of chemicals from polypyrrole films. J Am Chem Soc 106:6861–6863CrossRef
    9.Heeger AJ (2001) Nobel Lecture: semiconducting and metallic polymers: the fourth generation of polymeric materials. Rev Mod Phys 73(3):681–700CrossRef
    10.The nobel prize in chemistry (2000) The Royal Swedish Academy of Sciences, Bengt N. http://​www.​nobelprize.​org . Accessed 30 April 2015
    11.Heeger AJ (2010) Semiconducting polymers: the third generation. Chem Soc Rev 39:2354–2371CrossRef
    12.Green RA, Lovell NH, Wallace GG, Poole-Warren LA (2008) Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 29:3393–3399CrossRef
    13.Yoon CO, Sung HK, Kim JH, Barsoukov E, Kim JH, Lee H (1999) The effect of low-temperature conditions on the electrochemical polymerization of polypyrrole films with high density, high electrical conductivity and high stability. Synth Met 99:201–212CrossRef
    14.Teshima K, Yamada K, Kobayashi N, Hirohashi R (1997) Effect of electropolymerization temperature on structural, morphological and conductive properties of poly(aniline) deposits prepared in 1,2-dichloroethane without a proton donor. J Electroanal Chem 426:97–102CrossRef
    15.Shimoda S, Smela E (1998) The effect of pH on polymerization and volume change in PPy (DBS). Electrochim Acta 44:219–238CrossRef
    16.Bhattacharya A, De A, Das S (1996) Electrochemical preparation and study of transport properties of polypyrrole doped with unsaturated organic sulfonates. Polymer 37:4375–4382CrossRef
    17.Saidman SB, Bessone JB (2002) Electrochemical preparation and characterisation of polypyrrole on aluminium in aqueous solution. J Electroanal Chem 521:87–94CrossRef
    18.Saidman SB, Quinzani OV (2004) Characterisation of polypyrrole electrosynthesised on aluminium. Electrochim Acta 50:127–134CrossRef
    19.Tietje-Girault J, Ponce de León C, Walsh FC (2007) Electrochemically deposited polypyrrole films and their characterization. Surf Coat Technol 201:6025–6034CrossRef
    20.Iroh JO, Su W (1999) Characterization of the passive inorganic interphase and polypyrrole coatings formed on steel by the aqueous electrochemical process. J Appl Polym Sci 71:2075–2086CrossRef
    21.Iroh JO, Su W (2000) Corrosion performance of polypyrrole coating applied to low carbon steel by an electrochemical process. Electrochim Acta 46:15–24CrossRef
    22.Su W, Iroh JO (1997) Formation of polypyrrole coatings onto low carbon steel by electrochemical process. J Appl Polym Sci 65:417–424CrossRef
    23.Su W, Iroh JO (1997) Formation of polypyrrole coatings on stainless steel in aqueous benzene sulfonate solution. Electrochim Acta 42:2685–2694CrossRef
    24.Kubisa P (2004) Application of ionic liquids as solvents for polymerization processes. Prog Polym Sci 29:3–12CrossRef
    25.Ko J, Rhee H, Park SM, Kim C (1990) Morphology and electrochemical properties of polypyrrole films prepared in aqueous and nonaqueous solvents. J Electrochem Soc 137:905–909CrossRef
    26.Kupila EL, Kankare J (1996) Electropolymerization of pyrrole in aqueous solvent mixtures studied by in situ conductimetry. Synth Met 82:89–95CrossRef
    27.Owens DR, Zinman B, Bolli G (2003) Alternative routes of insulin delivery. Diabet Med 20:886–898CrossRef
    28.Shaji J, Patole V (2008) Protein and peptide drug delivery: oral approaches. Indian J Pharm Sci 70:269–277CrossRef
    29.Razzacki SZ, Thwar PK, Yang M, Ugaz VM, Burns MA (2004) Integrated microsystems for controlled drug delivery. Adv Drug Deliv Rev 56:185–198CrossRef
    30.Shaik MR, Korsapati M, Panati D (2012) Polymers in controlled drug delivery systems. Int J Pharm Sci 2:112–116
    31.Wadhwa R, Lagenaur CF, Cui XT (2006) Electrochemically controlled release of dexamethasone from conducting polymer polypyrrole coated electrode. J Control Release 110:531–541CrossRef
    32.Venkatesan J, Bhatnagar I, Manivasagan P, Kang K-H, Kim S-K (2015) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281CrossRef
    33.Pelto J, Björninen M, Pälli A, Talvitie E, Hyttinen J, Mannerström B, Seppanen S-R, Kellomäki M, Miettinen S, Haimi S (2013) Novel polypyrrole-coated polylactide scaffolds enhance adipose stem cell proliferation and early osteogenic differentiation. Tissue Eng 19:882–892CrossRef
    34.Shoichet M, Winn S (2000) Cell delivery to the central nervous system. Adv Drug Deliv Rev 42:81–102CrossRef
    35.Langer R (1990) New methods of drug delivery. Science 249:1527–1533CrossRef
    36.Wang P, Frazier J, Brem H (2002) Local drug delivery to the brain. Adv Drug Deliv Rev 54:987–1013CrossRef
    37.Geetha S, Rao C, Vijayan M, Trivedi DC (2006) Biosensing and drug delivery by polypyrrole. Anal Chim Acta 568:119–125CrossRef
    38.Smith J, Lamprou D (2014) Polymer coatings for biomedical applications: a review. Trans IMF 92:9–19CrossRef
    39.Thompson BC, Moulton SE, Ding J, Richardson R, Cameron A, O’Leary S, Wallace GG, Clark GM (2006) Optimising the incorporation and release of a neurotrophic factor using conducting polypyrrole. J Control Release 116:285–294CrossRef
    40.Luo X, Matranga C, Tan S, Alba N, Cui XT (2011) Carbon nanotube nanoreservior for controlled release of anti-inflammatory dexamethasone. Biomaterials 32:6316–6323CrossRef
    41.Herrasti P, Kulak AN, Bavykin DV, Ponce de Leon C, Zekonyte J, Walsh FC (2011) Electrodeposition of polypyrrole–titanate nanotube composites coatings and their corrosion resistance. Electrochim Acta 56:1323–1328CrossRef
    42.Prakash SB, Urdaneta M, Christophersen M, Smela E, Abshire P (2008) In situ electrochemical control of electroactive polymer films on a CMOS chip. Sensors Actuators B Chem 129:699–704CrossRef
    43.Smela E (2003) Conjugated polymer actuators for biomedical applications. Adv Mater 15:481–494CrossRef
    44.Ateh D, Navsaria HA, Vadgama P (2006) Polypyrrole-based conducting polymers and interactions with biological tissues. J R Soc Interface 22:741–752CrossRef
    45.Ferraz N, Strømme M, Fellström B, Pradhan S, Nyholm L, Mihranyan A (2012) In vitro and in vivo toxicity of rinsed and aged nanocellulose–polypyrrole composites. J Biomed Mater Res 100:2128–2138CrossRef
    46.Kamalesh S, Tan P, Wang J, Lee T, Kang E-T, Wang C-H (2000) Biocompatibility of electroactive polymers in tissues. J Biomed Mater Res 52:467–478CrossRef
    47.Wang X, Gu X, Yuan C, Chen S, Zhang P, Zhang T, Yao J, Chen F, Chen G (2004) Evaluation of biocompatibility of polypyrrole in vitro and in vivo. J Biomed Mater Res 68:411–422CrossRef
    48.Humpolicek P, Kasparkova V, Saha P, Stejskal J (2012) Biocompatibility of polyaniline. Synth Met 162:722–727CrossRef
    49.Kontturi K, Pentti P, Sundholm G (1998) Polypyrrole as a model membrane for drug delivery. J Electroanal Chem 453:231–238CrossRef
    50.Svirskis D, Wright BE, Travas-Sejdic J, Rodgers A, Garg S (2010) Evaluation of physical properties and performance over time of an actuating polypyrrole based drug delivery system. Sensors Actuators B Chem 151:97–102CrossRef
    51.Gandhi MR, Murray P, Spinks GM, Wallace GG (1995) Mechanism of electromechanical actuation in polypyrrole. Synth Met 73:247–256CrossRef
    52.Hepel J, Bruckenstein S, Hepel M (1997) Effect of pH on ion dynamics in composite PPy/Heparin films. Microchem J 55:179–191CrossRef
    53.Xie Q, Kuwabata S, Yoneyama H (1997) EQCM studies on polypyrrole in aqueous solutions. J Electroanal Chem 420(1–2):219–225CrossRef
    54.Inganäs O, Erlandsson R, Nylander C, Lundström I (1984) Proton modification of conducting polypyrrole. J Phys Chem Solids 45:427–432CrossRef
    55.Pernaut J-M, Reynolds JR (2000) Use of conducting electroactive polymers for drug delivery and sensing of bioactive molecules. A redox chemistry approach. J Phys Chem B 104:4080–4090CrossRef
    56.Kean T, Miller J, Skellern G, Snodin D (2006) Acceptance criteria for levels of hydrazine in substances for pharmaceutical use and analytical methods for its determination. Pharmeur Bio Sci Notes 2:23–33
    57.Ge D, Qi R, Mu J, Ru X, Hong S, Ji S, Linkov V, Shi W (2010) A self-powered and thermally-responsive drug delivery system based on conducting polymers. Electrochem Commun 12:1087–1090CrossRef
    58.Ge D, Ru X, Hong S, Jiang S, Tu J, Wang J, Zhang A, Ji S, Linkov V, Ren B, Shi W (2010) Coating metals on cellulose–polypyrrole composites: a new route to self-powered drug delivery system. Electrochem Commun 12:1367–1370CrossRef
    59.Luo X, Cui XT (2009) Electrochemically controlled release based on nanoporous conducting polymers. Electrochem Commun 11:402–404CrossRef
    60.Luo X, Cui XT (2009) Sponge-like nanostructured conducting polymers for electrically controlled drug release. Electrochem Commun 11:1956–1959CrossRef
    61.Pyo M, Reynolds JR (1995) Poly(pyrrole adenosine 5′-triphosphate) (PP-ATP) and conducting polymer bilayers for transport of biologically active ions. Synth Met 71:2233–2236CrossRef
    62.Moulton SE, Imisides MD, Shepherd RL, Wallace GG (2008) Galvanic coupling conducting polymers to biodegradable Mg initiates autonomously powered drug release. J Mater Chem 18:3608–3613CrossRef
    63.Song Y, Shan D, Chen R, Zhang F, Han E-H (2009) Biodegradable behaviors of AZ31 magnesium alloy in simulated body fluid. Mater Sci Eng C 29:1039–1045CrossRef
    64.Turhan MC, Weiser M, Killian MS, Leitner B, Virtanen S (2011) Electrochemical polymerization and characterization of polypyrrole on Mg–Al alloy (AZ91D). Synth Met 161:360–364CrossRef
    65.Sheng N, Ohtsuka T (2012) Preparation of conducting poly-pyrrole layer on zinc coated Mg alloy of AZ91D for corrosion protection. Prog Org Coat 75:59–64CrossRef
    66.Cui X, Huang X, He Y, Dai L, Wang S, Sun Y, Shi W, Ge D (2014) Cathodic protection: a new strategy to enable the formation of nanostructured polypyrrole on magnesium. Synth Met 195:97–101CrossRef
    67.Yfantis A, Paloumpa I, Schmeißer D, Yfantis D (2002) Novel corrosion-resistant films for Mg alloys. Surf Coat Technol 151:400–404CrossRef
    68.Wang CY, Ashraf S, Too CO, Wallace GG (2009) Ionic liquid as electrolyte in a self-powered controlled release system. Sensors Actuators B Chem 141:452–457CrossRef
    69.Winther-Jensen B, Clark NB (2008) Controlled release of dyes from chemically polymerised conducting polymers. React Funct Polym 68:742–750CrossRef
    70.Patra D, Sengupta S, Duan W, Zhang H, Pavlick R, Sen A (2013) Intelligent, self-powered, drug delivery systems. Nanoscale 5:1273–1283CrossRef
    71.Pumera M (2010) Electrochemically powered self-propelled electrophoretic nanosubmarines. Nanoscale 2:1643–1649CrossRef
    72.Zhang H, Duan W, Liu L, Sen A (2013) Depolymerization-powered autonomous motors using biocompatible fuel. J Am Chem Soc 135:15734–15737CrossRef
    73.Wang W, Duan W, Sen A, Mallouk TE (2013) Catalytically powered dynamic assembly of rod-shaped nanomotors and passive tracer particles. Proc Natl Acad Sci U S A 110:17744–17749CrossRef
    74.Paxton WF, Kistler KC, Olmeda CC, Sen A, Angelo SK St., Cao Y, Mallouk TE, Lammert PE, Crespi VH (2004) Catalytic nanomotors: autonomous movement of striped nanorods. J Am Chem Soc 126:13424–13431.
    75.Golestanian R, Liverpool TB, Ajdari A (2005) Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys Rev Lett 94:220801-1–220801-4CrossRef
    76.Solovev AA, Mei Y, Bermúdez Ureña E, Huang G, Schmidt OG (2009) Catalytic microtubular jet engines self-propelled by accumulated gas bubbles. Small 5:1688–1692CrossRef
    77.Ghosh A, Fischer P (2009) Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett 9:2243–2245CrossRef
    78.Gao W, Sattayasamitsathit S, Manesh KM, Weihs D, Wang J (2010) Magnetically powered flexible metal nanowire motors. J Am Chem Soc 132:14403–14405CrossRef
    79.Loget G, Kuhn A (2010) Propulsion of microobjects by dynamic bipolar self-regeneration. J Am Chem Soc 132:15918–15919CrossRef
    80.Solovev AA, Smith EJ, Bof ’Bufon CC, Sanchez S, Schmidt OG (2011) Light-controlled propulsion of catalytic microengines. Angew Chem Int Ed 50:10875–10878CrossRef
    81.Hong Y, Diaz M, Córdova-Figueroa UM, Sen A (2010) Light-driven titanium-dioxide-based reversible microfireworks and micromotor/micropump systems. Adv Funct Mater 20:1568–1576CrossRef
    82.Wang W, Castro LA, Hoyos M, Mallouk TE (2012) Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 6:6122–6132CrossRef
    83.Garcia-Gradilla V, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F, Pourazary A, Katzenberg A, Gao W, Shen Y, Wang J (2013) Functionalized ultrasound-propelled magnetically guided nanomotors: toward practical biomedical applications. ACS Nano 7:9232–9240CrossRef
    84.Pumera M (2011) Nanomaterials meet microfluidics. Chem Commun 47:5671–5680CrossRef
    85.Hong Y, Blackman NMK, Kopp ND, Sen A, Velegol D (2007) Chemotaxis of nonbiological colloidal rods. Phys Rev Lett 99:178103-1–178103-4
    86.Wang Y, S-t F, Byun Y-M, Lammert PE, Crespi VH, Sen A, Mallouk TE (2009) Dynamic interactions between fast microscale rotors. J Am Chem Soc 131:9926–9927CrossRef
    87.Kanti Dey K, Ranjan Panda B, Paul A, Basu S, Chattopadhyay A (2010) Catalytic gold nanoparticle driven pH specific chemical locomotion. J Colloid Interface Sci 348:335–341CrossRef
    88.Dey KK, Bhandari S, Bandyopadhyay D, Basu S, Chattopadhyay A (2013) The pH taxis of an intelligent catalytic microbot. Small 9:1916–1920CrossRef
    89.Sundararajan S, Lammert PE, Zudans AW, Crespi VH, Sen A (2008) Catalytic motors for transport of colloidal cargo. Nano Lett 8:1271–1276CrossRef
    90.Orozco J, Campuzano S, Kagan D, Zhou M, Gao W, Wang J (2011) Dynamic isolation and unloading of target proteins by aptamer-modified microtransporters. Anal Chem 83:7962–7969CrossRef
    91.Campuzano S, Orozco J, Kagan D, Guix M, Gao W, Sattayasamitsathit S, Claussen JC, Merkoçi A, Wang J (2011) Bacterial isolation by lectin-modified microengines. Nano Lett 12:396–401CrossRef
    92.Sundararajan S, Sengupta S, Ibele ME, Sen A (2010) Drop-off of colloidal cargo transported by catalytic Pt–Au nanomotors via photochemical stimuli. Small 6:1479–1482CrossRef
    93.Burdick J, Laocharoensuk R, Wheat PM, Posner JD, Wang J (2008) Synthetic nanomotors in microchannel networks: directional microchip motion and controlled manipulation of cargo. J Am Chem Soc 130:8164–8165CrossRef
    94.Wang J, Manesh KM (2010) Motion control at the nanoscale. Small 6:338–345CrossRef
    95.Mirkovic T, Zacharia NS, Scholes GD, Ozin GA (2010) Nanolocomotion-catalytic nanomotors and nanorotors. Small 6:159–167CrossRef
    96.Mano N, Heller A (2005) Bioelectrochemical propulsion. J Am Chem Soc 127:11574–11575CrossRef
    97.Zhang L, Abbott JJ, Dong L, Kratochvil BE, Bell D, Nelson BJ (2009) Artificial bacterial flagella: fabrication and magnetic control. Appl Phys Lett 94:064107CrossRef
    98.Gao W, Kagan D, Pak OS, Clawson C, Campuzano S, Chuluun-Erdene E, Shipton E, Fullerton EE, Zhang L, Lauga E, Wang J (2012) Cargo-towing fuel-free magnetic nanoswimmers for targeted drug delivery. Small 8:460–467CrossRef
    99.Palmore GTR, Whitesides GM (1994) Microbial and enzymatic biofuel cells. ACS Symp Ser 566:271–290CrossRef
    100.Osman MH, Shah AA, Walsh FC (2010) Recent progress and continuing challenges in bio-fuel cells. Part II: microbial. Biosens Bioelectron 26:953–963CrossRef
    101.Neto SA, De Andrade AR (2013) New energy sources: the enzymatic biofuel cell. J Braz Chem Soc 24:1891–1912
    102.Osman MH, Shah AA, Walsh FC (2011) Recent progress and continuing challenges in bio-fuel cells. Part I: enzymatic cells. Biosens Bioelectron 26:3087–3102CrossRef
    103.Oliver NS, Toumazou C, Cass AEG, Johnston DG (2009) Glucose sensors: a review of current and emerging technology. Diabet Med 26:197–210CrossRef
    104.Zhou M, Du Y, Chen C, Li B, Wen D, Dong S, Wang E (2010) Aptamer-controlled biofuel cells in logic systems and used as self-powered and intelligent logic aptasensors. J Am Chem Soc 132:2172–2174CrossRef
    105.Zhou M, Zhou N, Kuralay F, Windmiller JR, Parkhomovsky S, Valdés-Ramírez G, Katz E, Wang J (2012) A self-powered “sense-act-treat” system that is based on a biofuel cell and controlled by Boolean logic. Angew Chem Int Ed 51:2686–2689CrossRef
    106.Bullen RA, Arnot TC, Lakeman JB, Walsh FC (2006) Biofuel cells and their development. Biosens Bioelectron 21:2015–2045CrossRef
    107.Li L, Huang C (2007) Electrochemical/electrospray mass spectrometric studies of electrochemically stimulated ATP release from PP/ATP films. J Am Soc Mass Spectrom 18:919–926CrossRef
    108.Leprince L, Dogimont A, Magnin D, Demoustier-Champagne S (2010) Dexamethasone electrically controlled release from polypyrrole-coated nanostructured electrodes. J Mater Sci Mater Med 21:925–930CrossRef
    109.Jiang S, Sun Y, Cui X, Huang X, He Y, Ji S, Shi W, Ge D (2013) Enhanced drug loading capacity of polypyrrole nanowire network for controlled drug release. Synth Met 163:19–23CrossRef
    110.Li Y, Ewen RJ, Campbell SA, Smith JR (2012) Electrochemically controlled release of antischistosomiasis agents from polypyrrole. J Mater Chem 22:2687–2694CrossRef
    111.Liu Z, Ya J, Xin Y, Ma J, Zhou C (2006) Assembly of polystyrene colloidal crystal templates by a dip-drawing method. J Cryst Growth 297:223–227CrossRef
    112.Li S, Zheng J, Zhao Y, Liu Y (2008) Preparation of a three-dimensional ordered macroporous titanium dioxide material with polystyrene colloid crystal as a template. J Appl Polym Sci 107:3903–3908CrossRef
    113.Zeng F, Sun Z, Wang C, Ren B, Liu X, Tong Z (2002) Fabrication of inverse opal via ordered highly charged colloidal spheres. Langmuir 18:9116–9120CrossRef
    114.Cho Y, Borgens RB (2011) Biotin-doped porous polypyrrole films for electrically controlled nanoparticle release. Langmuir 27:6316–6322CrossRef
    115.Sharma M, Waterhouse GIN, Loader SWC, Garg S, Svirskis D (2013) High surface area polypyrrole scaffolds for tunable drug delivery. Int J Pharm 443:163–168CrossRef
    116.Cho SJ, Kim HJ, Lee JH, Choi HW, Kim HG, Chung HM, Do JT (2010) Silica coated titania nanotubes for drug delivery system. Mater Lett 64:1664–1667CrossRef
    117.Yang N, Chen X, Ren T, Zhang P, Yang D (2015) Carbon nanotube based biosensors. Sensors Actuators B Chem 207(Part A):690–715CrossRef
    118.Barik MA, Dutta JC (2014) Fabrication and characterization of junctionless carbon nanotube field effect transistor for cholesterol detection. Appl Phys Lett 105:053509-1–053509–5CrossRef
    119.Wu Z, W-q S, Feng T, Tang SW, Li G, Jiang K-l, Xu S-y, Ong CK (2015) Imaging of soft material with carbon nanotube tip using near-field scanning microwave microscopy. Ultramicroscopy 148:75–80CrossRef
    120.Barghi SH, Tsotsis TT, Sahimi M (2014) Chemisorption, physisorption and hysteresis during hydrogen storage in carbon nanotubes. Int J Hydrog Energy 39(3):1390–1397CrossRef
    121.Hashmi SG, Moehl T, Halme J, Ma Y, Saukkonen T, Yella A, Giordano F, Decoppet JD, Zakeeruddin SM, Lund P, Gratzel M (2014) A durable SWCNT/PET polymer foil based metal free counter electrode for flexible dye-sensitized solar cells. J Mater Chem 2:19609–19615CrossRef
    122.Ren H, Pyo S, Lee J-I, Park T-J, Gittleson FS, Leung FCC, Kim J, Taylor AD, Lee H-S, Chae J (2015) A high power density miniaturized microbial fuel cell having carbon nanotube anodes. J Power Sources 273:823–830CrossRef
    123.Shvedova A, Castranova V, Kisin E, Schwegler-Berry D, Murray A, Gandelsman V, Maynard A, Baron P (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health 66:1909–1926CrossRef
    124.Manna SK, Sarkar S, Barr J, Wise K, Barrera EV, Jejelowo O, Rice-Ficht AC, Ramesh GT (2005) Single-walled carbon nanotube induces oxidative stress and activates nuclear transcription factor-κB in human keratinocytes. Nano Lett 5:1676–1684CrossRef
    125.Muller J, Huaux F, Moreau N, Misson P, Heilier J-F, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231CrossRef
    126.Cui D, Tian F, Ozkan CS, Wang M, Gao H (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73–85CrossRef
    127.Ivanova VT, Katrukha GS, Timofeeva AV, Ilyna MV, Kurochkina YE, Baratova LA, Sapurina IY, Ivanov VF (2011) The sorption of influenza viruses and antibiotics on carbon nanotubes and polyaniline nanocomposites. J Phys Conf 291:012004CrossRef
    128.Zwilling V, Darque-Ceretti E, Boutry-Forveille A, David D, Perrin MY, Aucouturier M (1999) Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy. Surf Interface Anal 27:629–637CrossRef
    129.Gong D, Grimes CA, Varghese OK, Hu W, Singh RS, Chen Z, Dickey EC (2001) Titanium oxide nanotube arrays prepared by anodic oxidation. J Mater Res 16:3331–3334CrossRef
    130.Liu G, Wang K, Hoivik N, Jakobsen H (2012) Progress on free-standing and flow-through TiO2 nanotube membranes. Sol Energy Mater Sol Cells 98:24–38CrossRef
    131.Xiao X, Yang L, Guo M, Pan C, Cai Q, Yao S (2009) Biocompatibility and in vitro antineoplastic drug-loaded trial of titania nanotubes prepared by anodic oxidation of a pure titanium. Sci China B Chem Life Sci Earth Sci 52:2161–2165CrossRef
    132.Neupane MP, Park IS, Bae TS, Yi HK, Uo M, Watari F, Lee MH (2011) Titania nanotubes supported gelatin stabilized gold nanoparticles for medical implants. J Mater Chem 21:12078–12082CrossRef
    133.Popat KC, Eltgroth M, LaTempa TJ, Grimes CA, Desai TA (2007) Titania nanotubes: a novel platform for drug-eluting coatings for medical implants? Small 3:1878–1881CrossRef
    134.Wilmowsky CV, Bauer S, Lutz R, Meisel M, Neukam FW, Toyoshima T, Schmuki P, Nkenke E, Schlegel KA (2009) In vivo evaluation of anodic TiO2 nanotubes: an experimental study in the pig. J Biomed Mater Res B Appl Biomater 89:165–171CrossRef
    135.Baowan D, Sukchom W, Chayantrakom K, Satiracoo P (2011) Three possible encapsulation mechanics of TiO2 nanoparticles into single-walled carbon nanotubes. J Nanomater ID 857864:1–8
    136.Babazadeh M, Gohari FR, Olad A (2012) Characterization and physical properties investigation of conducting polypyrrole/TiO2 nanocomposites prepared through a one-step “in situ” polymerization method. J Appl Polym Sci 123:1922–1927CrossRef
    137.Swami N, Cui Z, Nair LS (2011) Titania nanotubes: novel nanostructures for improved Osseointegration. J Heat Transf 133:034002CrossRef
    138.Noh K, Brammer KS, Kim SH, Choi C, Frandsen CJ, Jin S (2011) A new nano-platform for drug release via nanotubular aluminum oxide. J Biomater Nanobiotechnol 2:226–233CrossRef
    139.Kong Y, Ge H, Xiong J, Zuo S, Wei Y, Yao C, Deng L (2014) Palygorskite polypyrrole nanocomposite: a new platform for electrically tunable drug delivery. Appl Clay Sci 99:119–124CrossRef
    140.Gao W, Borgens RB (2015) Remote-controlled eradication of astrogliosis in spinal cord injury via electromagnetically-induced dexamethasone release from “smart” nanowires. J Control Release 211:22–27CrossRef
  • 作者单位:B. Alshammary (1)
    F. C. Walsh (1)
    P. Herrasti (2)
    C. Ponce de Leon (1)

    1. Electrochemical Engineering Laboratory, Energy Technology Research Group, Engineering Sciences, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
    2. Facultad de Ciencias, Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, Cantoblanco, 28049, Madrid, Spain
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Physical Chemistry
    Analytical Chemistry
    Industrial Chemistry and Chemical Engineering
    Characterization and Evaluation Materials
    Condensed Matter
    Electronic and Computer Engineering
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1433-0768
文摘
Over the last 40 years, electrically conductive polymers have become well established as important electrode materials. Polyanilines, polythiophenes and polypyrroles have received particular attention due to their ease of synthesis, chemical stability, mechanical robustness and the ability to tailor their properties. Electrochemical synthesis of these materials as films have proved to be a robust and simple way to realise surface layers with controlled thickness, electrical conductivity and ion transport. In the last decade, the biomedical compatibility of electrodeposited polymers has become recognised; in particular, polypyrroles have been studied extensively and can provide an effective route to pharmaceutical drug release. The factors controlling the electrodeposition of this polymer from practical electrolytes are considered in this review including electrolyte composition and operating conditions such as the temperature and electrode potential. Voltammetry and current-time behaviour are seen to be effective techniques for film characterisation during and after their formation. The degree of take-up and the rate of drug release depend greatly on the structure, composition and oxidation state of the polymer film. Specialised aspects are considered, including galvanic cells with a Mg anode, use of catalytic nanomotors or implantable biofuel cells for a self-powered drug delivery system and nanoporous surfaces and nanostructures. Following a survey of polymer and drug types, progress in this field is summarised and aspects requiring further research are highlighted.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700