Comparative metagenomics of biogas-producing microbial communities from production-scale biogas plants operating under wet or dry fermentation conditions
详细信息    查看全文
  • 作者:Yvonne Stolze (1)
    Martha Zakrzewski (2)
    Irena Maus (1)
    Felix Eikmeyer (1)
    Sebastian Jaenicke (3)
    Nils Rottmann (4)
    Clemens Siebner (1)
    Alfred P眉hler (1)
    Andreas Schl眉ter (1)

    1. Institute for Genome Research and Systems Biology
    ; CeBiTec ; Bielefeld University ; Universit盲tsstra脽e 25 ; D-33615 ; Bielefeld ; Germany
    2. QIMR Berghofer Medical Research Institute Herston
    ; 300 Herston Road ; Brisbane ; QLD 4006 ; Australia
    3. Bioinformatics Resource Facility
    ; CeBiTec ; Bielefeld University ; Universit盲tsstra脽e 25 ; D-33615 ; Bielefeld ; Germany
    4. NORTH-TEC Maschinenbau GmbH
    ; Oldenh枚rn 1 ; 25821 ; Bredstedt ; Germany
  • 关键词:Biogas ; Dry fermentation ; Wet fermentation ; Microbial communities ; Methanogenesis ; Metagenomics ; 16S rRNA ; Methanoculleus bourgensis ; Fragment recruitment
  • 刊名:Biotechnology for Biofuels
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:8
  • 期:1
  • 全文大小:2,827 KB
  • 参考文献:1. Weiland P. Biogas production: current state and perspectives. Appl Microbiol Biotechnol. 2010;85:849鈥?0. CrossRef
    2. Yadvika S, Sreekrishnan TR, Kohli S, Rana V. Enhancement of biogas production from solid substrates using different techniques - a review. Bioresour Technol. 2004;95:1鈥?0. CrossRef
    3. Ohmiya K, Sakka K, Kimura T. Anaerobic bacterial degradation for the effective utilization of biomass. Biotechnol Bioprocess Eng. 2005;10:482鈥?3. CrossRef
    4. Braun R. Biogas from Energy Crop Digestion. In: IEA Task 37 Brochure. Paris, France: International Energy Agency; 2009.
    5. 脕cs N, Kov谩cs E, Wirth R, Bagi Z, Strang O, Herbel Z, et al. Changes in the / Archaea microbial community when the biogas fermenters are fed with protein-rich substrates. Bioresour Technol. 2012;131:121鈥?. CrossRef
    6. Kampmann K, Ratering S, Kramer I, Schmidt M, Zerr W, Schnell S. Unexpected stability of / Bacteroidetes and / Firmicutes communities in laboratory biogas reactors fed with different defined substrates. Appl Environ Microbiol. 2012;78(7):2106鈥?9. CrossRef
    7. Wei H, Tucker MP, Baker JO, Harris M, Luo Y, Xu Q, et al. Tracking dynamics of plant biomass composting by changes in substrate structure, microbial community, and enzyme activity. Biotechnol Biofuels. 2012;5:20. CrossRef
    8. Bengelsdorf FR, Gerischer U, Langer S, Zak M, Kazda M. Stability of a biogas-producing bacterial, archaeal and fungal community degrading food residues. FEMS Microbiol Ecol. 2012;84(1):201鈥?2. CrossRef
    9. Klocke M, M盲hnert P, Mundt K, Souidi K, Linke B. Microbial community analysis of a biogas-producing completely stirred tank reactor fed continuously with fodder beet silage as mono-substrate. Syst Appl Microbiol. 2007;30:139鈥?1. CrossRef
    10. Liu FH, Wang SB, Zhang JS, Zhang J, Yan X, Zhou HK, et al. The structure of the bacterial and archaeal community in a biogas digester as revealed by denaturing gradient gel electrophoresis and 16S rDNA sequencing analysis. J Appl Microbiol. 2009;106(3):952鈥?6. CrossRef
    11. Weiss A, Jerome V, Freitag R, Mayer HK. Diversity of the resident microbiota in a thermophilic municipal biogas plant. Appl Microbiol Biotechnol. 2008;81(1):163鈥?3. CrossRef
    12. Weiss A, J茅r么me V, Burghardt D, Likke L, Peiffer S, Hofstetter EM, et al. Investigation of factors influencing biogas production in a large-scale thermophilic municipal biogas plant. Appl Microbiol Biotechnol. 2009;84:987鈥?001. CrossRef
    13. Jaenicke S, Ander C, Bekel T, Bisdorf R, Dr枚ge M, Gartemann K-H, et al. Comparative and joint analysis of two metagenomic datasets from a biogas fermenter obtained by 454-pyrosequencing. PLoS One. 2011;6:e14519. CrossRef
    14. Krause L, Diaz NN, Edwards RA, Gartemann K-H, Kr枚meke H, Neuweger H, et al. Taxonomic composition and gene content of a methane-producing microbial community isolated from a biogas reactor. J Biotechnol. 2008;136(1鈥?):91鈥?01. CrossRef
    15. Li A, Chu Y, Wang X, Ren L, Yu J, Liu X, et al. A pyrosequencing-based metagenomic study of methane-producing microbial community in solid-state biogas reactor. Biotechnol Biofuels. 2013;6:3. CrossRef
    16. Schl眉ter A, Bekel T, Diaz NN, Dondrup M, Eichenlaub R, Gartemann K-H, et al. The metagenome of a biogas-producing microbial community of a production-scale biogas plant fermenter analysed by the 454-pyrosequencing technology. J Biotechnol. 2008;136(1鈥?):77鈥?0. CrossRef
    17. Wirth R, Kovacs E, Mar贸ti G, Bagi Z, R谩khely G, Kov谩cs KL. Characterization of a biogas-producing microbial community by short-read next generation DNA sequencing. Biotechnol Biofuels. 2012;5:41. CrossRef
    18. Rademacher A, Zakrzewski M, Schl眉ter A, Sch枚nberg M, Szczepanowski R, Goesmann A, et al. Characterization of microbial biofilms in a thermophilic biogas system by high-throughput metagenome sequencing. FEMS Microbiol Ecol. 2012;79(3):785鈥?9. CrossRef
    19. Eikmeyer F, K枚finger P, Poschenel A, J眉nemann S, Zakrzewski M, Heinl S, et al. Metagenome analyses reveal the influence of the inoculant / Lactobacillus buchneri CD034 on the microbial community involved in grass silaging. J Biotechnol. 2013;167(3):334鈥?3. CrossRef
    20. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S, Yooseph S, et al. The Sorcerer II global ocean sampling expedition: northwest Atlantic through eastern tropical Pacific. PLoS Biol. 2007;5(3):e77. CrossRef
    21. Weiland P. Biomass digestion in agriculture: a successful pathway for the energy production and waste treatment in Germany. Eng Life Sci. 2006;6(3):302鈥?. CrossRef
    22. Jans C, Gerber A, Bugnard J, Njage PM, Lacroix C, Meile L. Novel Streptococcus infantarius subsp. infantarius variants harboring lactose metabolism genes homologous to / Streptococcus thermophilus. Food Microbiol. 2012;31(1):33鈥?2. CrossRef
    23. Gerlach W, Stoye J. Taxonomic classification of metagenomic shotgun sequences with CARMA3. Nucleic Acids Res. 2011;39:e91. CrossRef
    24. Zakrzewski M, Bekel T, Ander C, P眉hler A, Rupp O, Stoye J, et al. MetaSAMS-A novel software platform for taxonomic classification, functional annotation and comparative analysis of metagenome datasets. J Biotechnol. 2012;167(2):156鈥?5. CrossRef
    25. Fleissner CK, Huebel N, Abd El-Bary MM, Loh G, Klaus S, Blaut M. Absence of intestinal microbiota does not protect mice from diet-induced obesity. Br J Nutr. 2010;104(6):919鈥?9. CrossRef
    26. Brown SD, Lamed R, Morag E, Borovok I, Shoham Y, Klingeman DM, et al. Draft genome sequences for / Clostridium thermocellum wild-type strain YS and derived cellulose adhesion-defective mutant strain AD2. J Bacteriol. 2012;194(12):3290鈥?. CrossRef
    27. Izquierdo JA, Goodwin L, Davenport KW, Teshima H, Bruce D, Detter C, et al. Complete genome sequence of / Clostridium clariflavum DSM 19732. Stand Genomic Sci. 2012;6(1):104鈥?5. CrossRef
    28. Zhilina TN, Zavarzina DG, Kolganova TV, Lysenko AM, Turova TP. New alkaliphilic peptide fermenting and Fe(III) regenerating Bacteria / Alkaliphilus peptidofermentans sp.nov. from soda lake. Mikrobiologiia. 2012;78(4):496鈥?05.
    29. Berg Miller ME, Antonopoulos DA, Rincon MT, Band M, Bari A, Akraiko T, et al. Diversity and strain specificity of plant cell wall degrading enzymes revealed by the draft genome of / Ruminococcus flavefaciens FD-1. PLoS One. 2009;4(8):e6650. CrossRef
    30. Miller TL, Wolin MJ. Bioconversion of cellulose to acetate with pure cultures of / Ruminococcus albus and a hydrogen-using acetogen. Appl Environ Microbiol. 2012;61(11):3832鈥?.
    31. Dassa B, Borovok I, Lamed R, Henrissat B, Coutinho P, Hemme CL, et al. Genome-wide analysis of / Acetivibrio cellulolyticus provides a blueprint of an elaborate cellulosome system. BMC Genomics. 2012;13:210. CrossRef
    32. Hu P, Yang M, Zhang A, Wu J, Chen B, Hua Y, et al. Complete genome sequence of / Streptococcus suis serotype 14 strain JS14. J Bacteriol. 2012;193(9):2375鈥?. CrossRef
    33. Kasperowicz A, Stan-Glasek K, Guczynska W, Piknov谩 M, Pristas P, Nigutov谩 K, et al. Fructanolytic and saccharolytic enzymes of the rumen bacterium / Pseudobutyrivibrio ruminis strain 3鈥損reliminary study. Folia Microbiol. 2010;55(4):329鈥?1. CrossRef
    34. Hippe H, Hagelstein A, Kramer I, Swiderski J, Stackebrandt E. Phylogenetic analysis of / Formivibrio citricus, / Propionivibrio dicarboxylicus, / Anaerobiospirillum thomasii. / Succinimonas amylolytica and / Succinivibrio dextrinosolvens and proposal of / Succinivibrionaceae fam. nov. Int J Syst Bacteriol. 1999;49(Pt 2):779鈥?2. CrossRef
    35. Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, Deneke J, et al. The complete genome sequence of / Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS One. 2011;6(4):e18814. CrossRef
    36. Deublein D, Steinhauser A. Biogas from Waste And Renewable Resources: An Introduction. Hoboken, New Jersey, USA: John Wiley & Sons; 2010. CrossRef
    37. Purushe J, Fouts DE, Morrison M, White BA, Mackie RI, North American Consortium for Rumen Bacteria, et al. Comparative genome analysis of / Prevotella ruminicola and / Prevotella bryantii: insights into their environmental niche. Microb Ecol. 2010;60(4):721鈥?. CrossRef
    38. Palatsi J, Vi帽as M, Guivernau M, Fernandez B, Flotats X. Anaerobic digestion of slaughterhouse waste: main process limitations and microbial community interactions. Bioresour Technol. 2011;102(3):2219鈥?7. CrossRef
    39. Baena S, Fardeau ML, Labat M, Ollivier B, Thomas P, Garcia JL, et al. / Aminobacterium colombiensegen nov. sp. nov., an amino acid-degrading anaerobe isolated from anaerobic sludge. Anaerobe. 1998;4(5):241鈥?0. CrossRef
    40. Chertkov O, Sikorski J, Brambilla E, Lapidus A, Copeland A, Glavina Del Rio T, et al. Complete genome sequence of / Aminobacterium colombiense type strain (ALA-1). Stand Genomic Sci. 2010;2(3):280鈥?. CrossRef
    41. Pelletier E, Kreimeyer A, Bocs S, Rouy Z, Gyapay G, Chouari R, et al. 鈥?em class="a-plus-plus">Candidatus Cloacamonas acidaminovorans鈥? genome sequence reconstruction provides a first glimpse of a new bacterial division. J Bacteriol. 2008;190(7):2572鈥?. CrossRef
    42. Kr枚ber M, Bekel T, Diaz NN, Goesmann A, Jaenicke S, Krause L, et al. Phylogenetic characterization of a biogas plant microbial community integrating clone library 16S-rDNA sequences and metagenome sequence data obtained by 454-pyrosequencing. J Biotechnol. 2009;142(1):38鈥?9. CrossRef
    43. Maus I, Wibberg D, Stantscheff R, Eikmeyer FG, Seffner A, Boelter J, et al. Complete genome sequence of the hydrogenotrophic, methanogenic archaeon / Methanoculleus bourgensis strain MS2(T), isolated from a sewage sludge digester. J Bacteriol. 2012;194(19):5487鈥?. CrossRef
    44. Walter A, Knapp BA, Farbmacher T, Ebner C, Insam H, Franke-Whittle IH. Searching for links in the biotic characteristics and abiotic parameters of nine different biogas plants. Microb Biotechnol. 2012;5(6):717鈥?0. CrossRef
    45. Smith KS, Ingram-Smith C. / Methanosaeta, the forgotten methanogen? Trends Microbiol. 2007;15(4):150鈥?. CrossRef
    46. Zakrzewski M, Goesmann A, Jaenicke S, J眉nemann S, Eikmeyer FG, Szczepanowski R, et al. Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. J Biotechnol. 2012;158(4):248鈥?8. CrossRef
    47. Dridi B, Fardeau ML, Ollivier B, Raoult D, Drancourt M. / Methanomassiliicoccus luminyensis gen. nov., sp. nov., a methanogenic archaeon isolated from human faeces. Int J Syst Evol Microbiol. 2012;62(Pt 8):1902鈥?. CrossRef
    48. Griffiths-Jones S, Bateman A, Marshall M, Khanna A, Eddy SR. Rfam: an RNA family database. Nucleic Acids Res. 2003;31(1):439鈥?1. CrossRef
    49. Nettmann E, Bergmann I, Pramsch眉fer S, Mundt K, Plogsties V, Herrmann C, et al. Polyphasic analyses of methanogenic archaeal communities in agricultural biogas plants. Appl Environ Microbiol. 2010;76(8):2540鈥?. CrossRef
    50. Kitamura K, Fujita T, Akada S, Tonouchi A. / Methanobacterium kanagiense sp. nov., a hydrogenotrophic methanogen, isolated from rice-field soil. Int J Syst Evol Microbiol. 2011;61(Pt 6):1246鈥?2. CrossRef
    51. Rea S, Bowman JP, Popovski S, Pimm C, Wright AD. / Methanobrevibacter millerae sp. nov. and / Methanobrevibacter olleyae sp. nov., methanogens from the ovine and bovine rumen that can utilize formate for growth. Int J Syst Evol Microbiol. 2007;57(Pt 3):450鈥?. CrossRef
    52. Hu P, Yang M, Zhang A, Wu J, Chen B, Hua Y, et al. Complete genome sequence of / Streptococcus suis serotype 3 strain ST3. J Bacteriol. 2011;193(13):3428鈥?. CrossRef
    53. Feinberg L, Foden J, Barrett T, Davenport KW, Bruce D, Detter C, et al. Complete genome sequence of the cellulolytic thermophile / Clostridium thermocellum DSM1313. J Bacteriol. 2011;193(11):2906鈥?. CrossRef
    54. Rusniok C, Couv茅 E, Da Cunha V, El Gana R, Zidane N, Bouchier C, et al. Genome sequence of / Streptococcus gallolyticus: insights into its adaptation to the bovine rumen and its ability to cause endocarditis. J Bacteriol. 2010;192(8):2266鈥?6. CrossRef
    55. Heinl S, Wibberg D, Eikmeyer F, Szczepanowski R, Blom J, Linke B, et al. Insights into the completely annotated genome of / Lactobacillus buchneri CD034, a strain isolated from stable grass silage. J Biotechnol. 2012;161(2):153鈥?6. CrossRef
    56. Lazarev VN, Levitskii SA, Basovskii YI, Chukin MM, Akopian TA, Vereshchagin VV, et al. Complete genome and proteome of / Acholeplasma laidlawii. J Bacteriol. 2011;193(18):4943鈥?3. CrossRef
    57. Sikorski J, Teshima H, Nolan M, Lucas S, Hammon N, Deshpande S, et al. Complete genome sequence of / Mahella australiensis type strain (50鈥? BON). Stand Genomic Sci. 2011;4(3):331鈥?1. CrossRef
    58. Anderson I, Ulrich LE, Lupa B, Susanti D, Porat I, Hooper SD, et al. Genomic characterization of / Methanomicrobiales reveals three classes of methanogens. PLoS One. 2009;4(6):e5797. CrossRef
    59. Anderson IJ, Sieprawska-Lupa M, Lapidus A, Nolan M, Copeland A, Glavina Del Rio T, et al. Complete genome sequence of / Methanoculleus marisnigri Romesser / et al. 1981 type strain JR1. Stand Genomic Sci. 2009;1(2):189鈥?6. CrossRef
    60. Parshina SN, Sipma J, Nakashimada Y, Henstra AM, Smidt H, Lysenko AM, et al. / Desulfotomaculum carboxydivorans sp. nov., a novel sulfate-reducing bacterium capable of growth at 100% CO. Int J Syst Evol Microbiol. 2005;55(Pt 5):2159鈥?5. CrossRef
    61. He M, Sebaihia M, Lawley TD, Stabler RA, Dawson LF, Martin MJ, et al. Evolutionary dynamics of / Clostridium difficile over short and long time scales. Proc Natl Acad Sci U S A. 2010;107(16):7527鈥?2. CrossRef
    62. Chovatia M, Sikorski J, Schr枚der M, Lapidus A, Nolan M, Tice H, et al. Complete genome sequence of / Thermanaerovibrio acidaminovorans type strain (Su883). Stand Genomic Sci. 2009;1(3):254鈥?1. CrossRef
    63. Sieber JR, Sims DR, Han C, Kim E, Lykidis A, Lapidus AL, et al. The genome of / Syntrophomonas wolfei: new insights into syntrophic metabolism and biohydrogen production. Environ Microbiol. 2010;12(8):2289鈥?01.
    64. Seedorf H, Fricke WF, Veith B, Br眉ggemann H, Liesegang H, Strittmatter A, et al. The genome of / Clostridium kluyveri, a strict anaerobe with unique metabolic features. Proc Natl Acad Sci U S A. 2008;105(6):2128鈥?3. CrossRef
    65. Hemme CL, Mouttaki H, Lee YJ, Zhang G, Goodwin L, Lucas S, et al. Sequencing of multiple clostridial genomes related to biomass conversion and biofuel production. J Bacteriol. 2010;192(24):6494鈥?. CrossRef
    66. Hinse D, Vollmer T, R眉ckert C, Blom J, Kalinowski J, Knabbe C, et al. Complete genome and comparative analysis of / Streptococcus gallolyticus subsp. / gallolyticus, an emerging pathogen of infective endocarditis. BMC Genomics. 2011;12:400. CrossRef
    67. Schlegel L, Grimont F, Ageron E, Grimont PA, Bouvet A. Reappraisal of the taxonomy of the / Streptococcus bovis/ / Streptococcus equinus complex and related species: description of / Streptococcus gallolyticus subsp. / gallolyticus subsp. nov., / S. gallolyticus subsp. / macedonicus subsp. nov. and / S. gallolyticus subsp. / pasteurianus subsp. nov. Int J Syst Evol Microbiol. 2003;53(Pt 3):631鈥?5. CrossRef
    68. Papadimitriou K, Ferreira S, Papandreou NC, Mavrogonatou E, Supply P, Pot B, et al. Complete genome sequence of the dairy isolate / Streptococcus macedonicus ACA-DC 198. J Bacteriol. 2012;194(7):1838鈥?. CrossRef
    69. Feng X, Xu Y, Chen Y, Tang YJ. MicrobesFlux: a web platform for drafting metabolic models from the KEGG database. BMC Syst Biol. 2012;6:94. CrossRef
    70. Lee YE, Jain MK, Lee C, Zeikus JG. Taxonomic distinction of saccharolytic thermophilic anaerobes: description of / Thermoanaerobacterium xylanolyticum gen. nov., sp. nov., and / Thermoanaerobacterium saccharolyticum gen. nov., sp. nov.; reclassification of / Thermoanaerobium brockii, Clostridium thermosulfurogenes, and / Clostridium thermohydrosulfuricum E100-69 as / Thermoanaerobacter brockii comb. nov., / Thermoanaerobacterium thermosulfurigenes comb. nov., and / Thermoanaerobacter thermohydrosulfuricus comb. nov., respectively; and transfer of / Clostridium thermohydrosulfuricum 39E to / Thermoanaerobacter ethanolicus. Int J Syst Bacteriol. 1993;43:41鈥?1. CrossRef
    71. Kosaka T, Uchiyama T, Ishii S, Enoki M, Imachi H, Kamagata Y, et al. Reconstruction and regulation of the central catabolic pathway in the thermophilic propionate-oxidizing syntroph / Pelotomaculum thermopropionicum. J Bacteriol. 2006;188(1):202鈥?0. CrossRef
    72. Kosaka T, Kato S, Shimoyama T, Ishii S, Abe T, Watanabe K. The genome of / Pelotomaculum thermopropionicum reveals niche-associated evolution in anaerobic microbiota. Genome Res. 2008;18(3):442鈥?. CrossRef
    73. Tamaru Y, Miyake H, Kuroda K, Nakanishi A, Matsushima C, Doi RH, et al. Comparison of the mesophilic cellulosome-producing / Clostridium cellulovorans genome with other cellulosome-related clostridial genomes. Microb Biotechnol. 2011;4(1):64鈥?3. CrossRef
    74. Lien T, Madsen M, Rainey FA, Birkeland NK. / Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int J Syst Bacteriol. 1998;48(Pt 3):1007鈥?3. CrossRef
    75. Su F, Tao F, Tang H, Xu P. Genome sequence of the thermophile / Bacillus coagulans Hammer, the type strain of the species. J Bacteriol. 2012;194(22):6294鈥?. CrossRef
    76. Djao OD, Zhang X, Lucas S, Lapidus A, Del Rio TG, Nolan M, et al. Complete genome sequence of / Syntrophothermus lipocalidus type strain (TGB-C1). Stand Genomic Sci. 2010;3(3):268鈥?5. CrossRef
    77. Goberna M, Insam H, Franke-Whittle IH. Effect of biowaste sludge maturation on the diversity of thermophilic / Bacteria and / Archaea in an anaerobic reactor. Appl Environ Microbiol. 2009;75(8):2566鈥?2. CrossRef
    78. Schn眉rer J, Olsson J, B枚rjesson T. Fungal volatiles as indicators of food and feeds spoilage. Fungal Genet Biol. 1999;27(2鈥?):209鈥?7. CrossRef
    79. Lin IH, Liu TT, Teng YT, Wu HL, Liu YM, Wu KM, et al. Sequencing and comparative genome analysis of two pathogenic / Streptococcus gallolyticus subspecies: genome plasticity, adaptation and virulence. PLoS One. 2011;6(5):e20519. CrossRef
    80. Zheng X, Zheng H, Lan R, Ye C, Wang Y, Zhang J, et al. Identification of genes and genomic islands correlated with high pathogenicity in / Streptococcus suis using whole genome tiling microarrays. PLoS One. 2011;6(3):e17987. CrossRef
    81. Wibberg D, Blom J, Jaenicke S, Kollin F, Rupp O, Scharf B, et al. Complete genome sequencing of / Agrobacterium sp. H13-3, the former / Rhizobium lupini H13-3, reveals a tripartite genome consisting of a circular and a linear chromosome and an accessory plasmid but lacking a tumor-inducing Ti-plasmid. J Biotechnol. 2011;155(1):50鈥?2. CrossRef
    82. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335鈥?. CrossRef
    83. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460鈥?. CrossRef
    84. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2010;27(16):2194鈥?00. CrossRef
    85. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261鈥?. CrossRef
    86. Nawrocki EP, Kolbe DL, Eddy SR. Infernal 1.0: inference of RNA alignments. Bioinformatics. 2009;25(10):1335鈥?. CrossRef
    87. Price MN, Dehal PS, Arkin AP. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol Biol Evol. 2009;26(7):1641鈥?0. CrossRef
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Plant Breeding/Biotechnology
    Renewable and Green Energy
    Environmental Engineering/Biotechnology
  • 出版者:BioMed Central
  • ISSN:1754-6834
文摘
Background Decomposition of biomass for biogas production can be practiced under wet and dry fermentation conditions. In contrast to the dry fermentation technology, wet fermentation is characterized by a high liquid content and a relatively low total solid content. In this study, the composition and functional potential of a biogas-producing microbial community in an agricultural biogas reactor operating under wet fermentation conditions was analyzed by a metagenomic approach applying 454-pyrosequencing. The obtained metagenomic dataset and corresponding 16S rRNA gene amplicon sequences were compared to the previously sequenced comparable metagenome from a dry fermentation process, meeting explicitly identical boundary conditions regarding sample and community DNA preparation, sequencing technology, processing of sequence reads and data analyses by bioinformatics tools. Results High-throughput metagenome sequencing of community DNA from the wet fermentation process applying the pyrosequencing approach resulted in 1,532,780 reads, with an average read length of 397 bp, accounting for approximately 594 million bases of sequence information in total. Taxonomic comparison of the communities from wet and dry fermentation revealed similar microbial profiles with Bacteria being the predominant superkingdom, while the superkingdom Archaea was less abundant. In both biogas plants, the bacterial phyla Firmicutes, Bacteroidetes, Spirochaetes and Proteobacteria were identified with descending frequencies. Within the archaeal superkingdom, the phylum Euryarchaeota was most abundant with the dominant class Methanomicrobia. Functional profiles of the communities revealed that environmental gene tags representing methanogenesis enzymes were present in both biogas plants in comparable frequencies. 16S rRNA gene amplicon high-throughput sequencing disclosed differences in the sub-communities comprising methanogenic Archaea between both processes. Fragment recruitments of metagenomic reads to the reference genome of the archaeon Methanoculleus bourgensis MS2T revealed that dominant methanogens within the dry fermentation process were highly related to the reference. Conclusions Although process parameters, substrates and technology differ between the wet and dry biogas fermentations analyzed in this study, community profiles are very similar at least at higher taxonomic ranks, illustrating that core community taxa perform key functions in biomass decomposition and methane synthesis. Regarding methanogenesis, Archaea highly related to the type strain M. bourgensis MS2T dominate the dry fermentation process, suggesting the adaptation of members belonging to this species to specific fermentation process parameters.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700