Ionic liquid mediated synthesis of poly(2-hydroxyethyl methacrylate-block-methyl methacrylate)/Fe3O4 core–shell structured nanocomposite by ATRP method
详细信息    查看全文
  • 作者:Van Chinh Tran ; Van Hoa Nguyen ; Dirk Tuma ; Jae-Jin Shim
  • 关键词:Nanocomposite ; Block copolymer ; Fe3O4 nanoparticles ; Ionic liquid ; ATRP
  • 刊名:Colloid & Polymer Science
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:294
  • 期:4
  • 页码:777-785
  • 全文大小:775 KB
  • 参考文献:1.Mahmoudi M, Sant S, Wang B, Laurent S, Sen T (2011) Super paramagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy. Adv Drug Deliv Rev 63:24–46CrossRef
    2.Xu C, Sun S (2012) New forms of superparamagnetic nanoparticles for biomedical applications. Adv Drug Deliv Rev 65:732–743CrossRef
    3.Shanmugam V, Selvakumar S, Yeh CS (2014) Near-infrared light-responsive nanomaterials in cancer therapeutics. Chem Soc Rev 43:6254–6287CrossRef
    4.Mu B, Wang T, Wu Z, Shi H, Xue D, Liu P (2011) Fabrication of functional block copolymer grafted superparamagnetic nanoparticles for targeted and controlled drug delivery. Colloids Surf A 375:163–168CrossRef
    5.Cheng FY, Su CH, Yang YS, Yeh CS, Tsai CY, Wu CL, Wu MT, Shieh DB (2005) Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials 26:729–738CrossRef
    6.Wu W, Wu Z, Yu T, Jiang C, Kim WS (2015) Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater 16(2):1–43CrossRef
    7.Perez JM, Simeone FJ, Saeki Y, Josephson L, Weissleder R (2003) Viral-induced self-assembly of magnetic nanoparticles allows the detection of viral particles in biological media. J Am Chem Soc 125:10192–10193CrossRef
    8.Saiyed ZM, Ramchand CN, Telang SD (2008) Isolation of genomic DNA using magnetic nanoparticles as a solid-phase support. J Phys Condens Matter 20(20):204153CrossRef
    9.Lewin M, Carlesso N, Tung CH, Tang XW, Cory D, Scadden DT, Weissleder R (2000) Tat peptide-derivatized magnetic nanoparticles allow in vivo tracking and recovery of progenitor cells. Nat Biotechnol 18:410–414CrossRef
    10.Hong J, Xu D, Gong P, Yu J, Ma H, Yao S (2008) Covalent-bonded immobilization of enzyme on hydrophilic polymer covering magnetic nanogels. Micropor Mesopor Mater 109:470–477CrossRef
    11.Hood JD, Bednarski M, Frausto R, Guccione S, Reisfeld RA, Xiang R, Cheresh DA (2002) Tumor regression by targeted gene delivery to the neovasculature. Science 296:2404–2407CrossRef
    12.Qian ZM, Li H, Sun H, Ho K (2002) Targeted drug delivery via the transferrin receptor-mediated endocytosis pathway. Pharmacol Rev 54:561–587CrossRef
    13.Mahmoudi M, Hosseinkhani H, Hosseinkhani M, Boutry S, Simchi A, Journeay WS, Subramani K, Laurent S (2011) Magnetic resonance imaging tracking of stem cells in vivo using iron oxide nanoparticles as a tool for the advancement of clinical regenerative medicine. Chem Rev 111:253–280CrossRef
    14.Hua MY, Yang HW, Liu HL, Tsai RY, Pang ST, Chuang KL, Chang YS, Hwang TL, Chang YH, Chuang HC, Chuang CK (2011) Superhigh-magnetization nanocarrier as a doxorubicin delivery platform for magnetic targeting therapy. Biomaterials 32:8999–9010CrossRef
    15.Häfeli UO, Sweeney SM, Beresford BA, Humm JL, Macklis RM (1995) Effective targeting of magnetic radioactive 90Y-microspheres to tumor cells by an externally applied magnetic field. Preliminary in vitro and in vivo results. Nucl Med Biol 22:147–155CrossRef
    16.Yang HW, Hua MY, Liu HL, Huang CY, Wei KC (2012) Potential of magnetic nanoparticles for targeted drug delivery. Nanotechnol Sci Appl 5:73–86
    17.Ying XY, Du YZ, Hong LH, Yuan H, Hu FQ (2011) Magnetic lipid nanoparticles loading doxorubicin for intracellular delivery: preparation and characteristics. J Magn Magn Mater 323:1088–1093CrossRef
    18.Bogdanov Jr AA, Martin C, Weissleder R, Brady TJ (1994) Trapping of dextran-coated colloids in liposomes by transient binding to aminophospholipid: preparation of ferrosomes. Biochim Biophys Acta 1193:212–218CrossRef
    19.Jiang W, Sun Z, Li F, Chen K, Liu T, Liu J, Zhou T, Guo R (2011) A novel approach to preparing magnetic protein microspheres with core-shell structure. J Magn Magn Mater 323:435–439CrossRef
    20.Cole AJ, David AE, Wang J, Galbán CJ, Hill HL, Yang VC (2011) Polyethylene glycol modified, cross-linked starch-coated iron oxide nanoparticles for enhanced magnetic tumor targeting. Biomaterials 32:2183–2193CrossRef
    21.Bi F, Zhang J, Su Y, Tang YC, Liu JN (2009) Chemical conjugation of urokinase to magnetic nanoparticles for targeted thrombolysis. Biomaterials 30:5125–5130CrossRef
    22.Bradbury M, Hricak H (2005) Molecular MR imaging in oncology. Magn Reson Imaging Clin N Am 13:225–240CrossRef
    23.Montet X, Montet-Abou K, Reynolds F, Weissleder R, Josephson L (2006) Nanoparticle imaging of integrins on tumor cells. Neoplasia 8:214–222CrossRef
    24.Xiong L, Liang H, Wang R, Chen L (2011) A novel route for the synthesis of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) grafted titania nanoparticles via ATRP. J Polym Res 18:1017–1021CrossRef
    25.Wang W, Cao H, Zhu G, Wang P (2010) A facile strategy to modify TiO2 nanoparticles via surface-initiated ATRP of styrene. J Polym Sci A Polym Chem 48:1782–1790
    26.Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45:4015–4039CrossRef
    27.Zhou Y, Qiu L, Deng Z, Texter J, Yan F (2011) Low-temperature AGET ATRP of methyl methacrylate in ionic liquid-based microemulsions. Macromolecules 44:7948–7955CrossRef
    28.Carmichael AJ, Haddleton DM (2002) Polymer synthesis in ionic liquids. In: Wasserscheid P, Welton T (eds) Ionic liquids in synthesis. Wiley-VCH, Weinheim, pp 319–335CrossRef
    29.Harrisson S, Mackenzie SR, Haddleton DM (2003) Pulsed laser polymerization in an ionic liquid: strong solvent effects on propagation and termination of methyl methacrylate. Macromolecules 36:5072–5075CrossRef
    30.Perrier S, Davis TP, Carmichael AJ, Haddleton DM (2003) Reversible addition-fragmentation chain transfer polymerization of methacrylate, acrylate and styrene monomers in 1-alkyl-3-methylimidazolium hexfluorophosphate. Eur Polym J 39:417–422CrossRef
    31.Biedroń T, Kubisa P (2003) Ionic liquids as reaction media for polymerization processes: atom transfer radical polymerization (ATRP) of acrylates in ionic liquids. Polym Int 52:1584–1588CrossRef
    32.Gupta MK, Bajpai J, Bajpai AK (2014) The biocompatibility and water uptake behavior of superparamagnetic poly(2-hydroxyethyl methacrylate)-magnetite nanocomposites as possible nanocarriers for magnetically mediated drug delivery system. J Polym Res 21(8):1–17CrossRef
    33.Horák D, Hlídková H, Hradil J, Lapčíková M, Šlouf M (2008) Superporous poly(2-hydroxyethyl methacrylate) based scaffolds: preparation and characterization. Polymer 49:2046–2054CrossRef
    34.Abraham S, Brahim S, Ishihara K, Guiseppi-Elie A (2005) Molecularly engineered p(HEMA)-based hydrogels for implant biochip biocompatibility. Biomaterials 26:4767–4778
    35.Chirila T, Hicks CR, Dalton PD, Vijayasekaran S, Lou X, Hong Y, Clayton AB, Ziegelaar BW, Fitton JH, Platten S, Crawford GJ, Constable IJ (1998) Artificial cornea. Prog Polym Sci 23:447–473CrossRef
    36.Karthick R, Sirisha P, Ravi Sankar M (2014) Mechanical and tribological properties of PMMA-sea shell based biocomposite for dental application. Procedia Materials Science 6:1989–2000CrossRef
    37.Fan Z, Gong F, Nguyen ST, Duong HM (2015) Advanced multifunctional graphene aerogel-poly(methyl methacrylate) composites: experiments and modelling. Carbon 81:396–404CrossRef
    38.Nguyen VH, Haldorai Y, Pham QL, Shim JJ (2011) Supercritical fluid mediated synthesis of poly(2-hydroxyethyl methacrylate)/Fe3O4 hybrid nanocomposite. Mater Sci Eng B 176:773–778
    39.Carmichael AJ, Haddleton DM, Bon SAF, Seddon KR (2000) Copper(I) mediated living radical polymerisation in an ionic liquid. Chem Commun: 1237–1238
    40.Minami H, Yoshida K, Okubo M (2008) Preparation of polystyrene particles by dispersion polymerization in an ionic liquid. Macromol Rapid Commun 29:567–572CrossRef
    41.Ferk G, Krajnc P, Hamler A, Mertelj A, Cebollada F, Drofenik M, Lisjak D (2015) Monolithic magneto-optical nanocomposites of barium hexaferrite platelets in PMMA. Sci Rep 5:11395–11403CrossRef
    42.Roy S, Yue CY, Venkatraman SS, Ma LL (2011) Low-temperature (below Tg) thermal bonding of COC microfluidic devices using UV photografted HEMA-modified substrates: high strength, stable hydrophilic, biocompatible surfaces. J Mater Chem 21:15031–15040
    43.Hirata T, Matsuno H, Tanaka M, Tanaka K (2011) Surface segregation of poly(2-methoxyethyl acrylate) in a mixture with poly(methyl methacrylate). Phys Chem Chem Phys 13:4928–4934CrossRef
    44.Versace DL, Dubot P, Cenedese P, Lalevée J, Soppera O, Malval JP, Renard E, Langlois V (2012) Natural biopolymer surface of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)-photoinduced modification with triarylsulfonium salts. Green Chem 14:788–798CrossRef
    45.Lin SL, Wen XF, Cai ZQ, Pi PH, Zheng DF, Cheng J, Zhang LJ, Qian Y, Yang ZR (2011) Synthesis and dissipative particle dynamics simulation of cross-linkable fluorinated diblock copolymers: self-assembly aggregation behavior in different solvents. Phys Chem Chem Phys 13:17323–17332CrossRef
    46.Hou C, Lin S, Liu F, Hu J, Zhang G, Liu G, Tu Y, Zou H, Luo H (2014) Synthesis of poly(2-hydroxyethyl methacrylate) end-capped with asymmetric functional groups via atom transfer radical polymerization. New J Chem 38:2538–2547CrossRef
    47.Islam MR, Bach LG, Lim KT (2013) Poly(2-hydroxyethyl methacrylate) grafted halloysite nanotubes as a molecular host matrix for luminescent ions prepared by surface-initiated RAFT polymerization and coordination chemistry. Appl Surf Sci 276:298–305CrossRef
    48.Maegawa M, Ajiro H, Kamei D, Akashi M (2013) A study on template effects using irregular porous isotactic poly(methyl methacrylate) films constructed with syndiotactic rich poly(methacrylic acid) and isotactic poly(methyl methacrylate). Polym J 45:898–903CrossRef
    49.Sreeja V, Joy PA (2011) Effect of inter-particle interactions on the magnetic properties of magnetite nanoparticles after coating with dextran. Int J Nanotechnol 8:907–915CrossRef
    50.Tartaj P, González-Carreño T, Serna CJ (2003) Magnetic behavior of γ-Fe2O3 nanocrystals dispersed in colloidal silica particles. J Phys Chem B 107:20–24
  • 作者单位:Van Chinh Tran (1)
    Van Hoa Nguyen (1) (2)
    Dirk Tuma (3)
    Jae-Jin Shim (1)

    1. School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 712-749, Republic of Korea
    2. Department of Chemistry, Nha Trang University, 2 Nguyen Dinh Chieu, Nha Trang, Vietnam
    3. BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Polymer Sciences
    Physical Chemistry
    Soft Matter and Complex Fluids
    Characterization and Evaluation Materials
    Food Science
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1435-1536
文摘
A hybrid nanocomposite of magnetic nanoparticles (Fe3O4) and poly(2-hydroxyethyl methacrylate)-block-poly(methyl methacrylate) (PHEMA-b-PMMA) was synthesized successfully by the atom transfer radical polymerization (ATRP) in an ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate ([Bmim]PF6). Fe3O4 nanoparticles were first surface-modified with the initiator, 2-bromoisobutyryl bromide (BiBBr), in dimethylformamide (DMF) solvent, which produced the macro-initiator, Fe3O4-BiB, to initiate the polymerization reactions for the synthesis of the block polymer, PHEMA-b-PMMA. After immobilizing the initiator on the surface of Fe3O4, the block polymer chains were grafted successfully onto the Fe3O4 surface, causing the formation of a core-shell nanostructure. The incorporation of Fe3O4 in the nanocomposite was confirmed by attenuated total reflectance-Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis, and X-ray photoelectron spectroscopy. The thermal stability and magnetic properties increased with increasing amount of Fe3O4 in the nanocomposite.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700