TRPM7 Regulates Axonal Outgrowth and Maturation of Primary Hippocampal Neurons
详细信息    查看全文
  • 作者:Ekaterina Turlova ; Christine Y. J. Bae ; Marielle Deurloo…
  • 关键词:TRPM7 ; Ion channel ; Neurite outgrowth ; Neuronal maturation ; Axonal development
  • 刊名:Molecular Neurobiology
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:53
  • 期:1
  • 页码:595-610
  • 全文大小:10,960 KB
  • 参考文献:1.Clapham DE, Julius D, Montell C, Schultz G (2005) International union of pharmacology. XLIX. Nomenclature and structure-function relationships of transient receptor potential channels. Pharmacol Rev 57:427–450CrossRef PubMed
    2.Fleig A, Chubanov V (2014) Trpm7. Handb Exp Pharmacol 222:521–546CrossRef PubMed
    3.Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877CrossRef PubMed
    4.Sun HS, Jackson MF, Martin LJ, Jansen K, Teves L, Cui H, Kiyonaka S, Mori Y, Jones M, Forder JP, Golde TE, Orser BA, MacDonald JF, Tymianski M (2009) Suppression of hippocampal TRPM7 protein prevents delayed neuronal death in brain ischemia. Nat Neurosci 12:1300–1307CrossRef PubMed
    5.Monteilh-Zoller MK, Hermosura MC, Nadler MJ, Scharenberg AM, Penner R, Fleig A (2003) TRPM7 provides an ion channel mechanism for cellular entry of trace metal ions. J Gen Physiol 121:49–60CrossRef PubMed PubMedCentral
    6.Ryazanova LV, Rondon LJ, Zierler S, Hu Z, Galli J, Yamaguchi TP, Mazur A, Fleig A, Ryazanov AG (2010) TRPM7 is essential for Mg(2+) homeostasis in mammals. Nat Commun 1:109CrossRef PubMed PubMedCentral
    7.Inoue K, Branigan D, Xiong ZG (2010) Zinc-induced neurotoxicity mediated by transient receptor potential melastatin 7 channels. J Biol Chem 285:7430–7439CrossRef PubMed PubMedCentral
    8.Hanano T, Hara Y, Shi J, Morita H, Umebayashi C, Mori E, Sumimoto H, Ito Y, Mori Y, Inoue R (2004) Involvement of TRPM7 in cell growth as a spontaneously activated Ca2+ entry pathway in human retinoblastoma cells. J Pharmacol Sci 95:403–419CrossRef PubMed
    9.Brauchi S, Krapivinsky G, Krapivinsky L, Clapham DE (2008) TRPM7 facilitates cholinergic vesicle fusion with the plasma membrane. Proc Natl Acad Sci U S A 105:8304–8308CrossRef PubMed PubMedCentral
    10.Krapivinsky G, Mochida S, Krapivinsky L, Cibulsky SM, Clapham DE (2006) The TRPM7 ion channel functions in cholinergic synaptic vesicles and affects transmitter release. Neuron 52:485–496CrossRef PubMed
    11.Clark K, Langeslag M, Van LB, Ran L, Ryazanov AG, Figdor CG, Moolenaar WH, Jalink K, van Leeuwen FN (2006) TRPM7, a novel regulator of actomyosin contractility and cell adhesion. EMBO J 25:290–301CrossRef PubMed PubMedCentral
    12.Nadler MJ, Hermosura MC, Inabe K, Perraud AL, Zhu Q, Stokes AJ, Kurosaki T, Kinet JP, Penner R, Scharenberg AM, Fleig A (2001) LTRPC7 is a Mg.ATP-regulated divalent cation channel required for cell viability. Nature 411:590–595CrossRef PubMed
    13.Jin J, Desai BN, Navarro B, Donovan A, Andrews NC, Clapham DE (2008) Deletion of Trpm7 disrupts embryonic development and thymopoiesis without altering Mg2+ homeostasis. Science 322:756–760CrossRef PubMed PubMedCentral
    14.Dotti CG, Sullivan CA, Banker GA (1988) The establishment of polarity by hippocampal neurons in culture. J Neurosci 8:1454–1468PubMed
    15.Gomez TM, Spitzer NC (2000) Regulation of growth cone behavior by calcium: new dynamics to earlier perspectives. J Neurobiol 44:174–183CrossRef PubMed
    16.Lohmann C, Finski A, Bonhoeffer T (2005) Local calcium transients regulate the spontaneous motility of dendritic filopodia. Nat Neurosci 8:305–312CrossRef PubMed
    17.Montell C (2005) The latest waves in calcium signaling. Cell 122:157–163CrossRef PubMed
    18.Mattson MP, Kater SB (1987) Calcium regulation of neurite elongation and growth cone motility. J Neurosci 7:4034–4043PubMed
    19.Henley J, Poo MM (2004) Guiding neuronal growth cones using Ca2+ signals. Trends Cell Biol 14:320–330CrossRef PubMed PubMedCentral
    20.Forscher P, Smith SJ (1988) Actions of cytochalasins on the organization of actin filaments and microtubules in a neuronal growth cone. J Cell Biol 107:1505–1516CrossRef PubMed
    21.Burridge K, Feramisco JR (1981) Non-muscle alpha actinins are calcium-sensitive actin-binding proteins. Nature 294:565–567CrossRef PubMed
    22.Fu X, Brown KJ, Yap CC, Winckler B, Jaiswal JK, Liu JS (2013) Doublecortin (Dcx) family proteins regulate filamentous actin structure in developing neurons. J Neurosci 33:709–721CrossRef PubMed PubMedCentral
    23.Zierler S, Yao G, Zhang Z, Kuo WC, Porzgen P, Penner R, Horgen FD, Fleig A (2011) Waixenicin A inhibits cell proliferation through magnesium-dependent block of transient receptor potential melastatin 7 (TRPM7) channels. J Biol Chem 286:39328–39335CrossRef PubMed PubMedCentral
    24.Gardzinski P, Lee DW, Fei GH, Hui K, Huang GJ, Sun HS, Feng ZP (2007) The role of synaptotagmin I C2A calcium-binding domain in synaptic vesicle clustering during synapse formation. J Physiol 581:75–90CrossRef PubMed PubMedCentral
    25.Wei WL, Sun HS, Olah ME, Sun X, Czerwinska E, Czerwinski W, Mori Y, Orser BA, Xiong ZG, Jackson MF, Tymianski M, MacDonald JF (2007) TRPM7 channels in hippocampal neurons detect levels of extracellular divalent cations. Proc Natl Acad Sci U S A 104:16323–16328CrossRef PubMed PubMedCentral
    26.Nejatbakhsh N, Guo CH, Lu TZ, Pei L, Smit AB, Sun HS, van Kesteren RE, Feng ZP (2011) Caltubin, a novel molluscan tubulin-interacting protein, promotes axonal growth and attenuates axonal degeneration of rodent neurons. J Neurosci 31:15231–15244CrossRef PubMed
    27.Schmitz SK, Hjorth JJ, Joemai RM, Wijntjes R, Eijgenraam S, De BP, Georgiou C, de Jong AP, Van OA, Verhage M, Cornelisse LN, Toonen RF, Veldkamp WJ (2011) Automated analysis of neuronal morphology, synapse number and synaptic recruitment. J Neurosci Methods 195:185–193CrossRef PubMed
    28.Silverman-Gavrila LB, Lu TZ, Prashad RC, Nejatbakhsh N, Charlton MP, Feng ZP (2009) Neural phosphoproteomics of a chronic hypoxia model–Lymnaea stagnalis. Neuroscience 161:621–634CrossRef PubMed
    29.Bentley D, Toroian-Raymond A (1986) Disoriented pathfinding by pioneer neurone growth cones deprived of filopodia by cytochalasin treatment. Nature 323:712–715CrossRef PubMed
    30.Middelbeek J, Kuipers AJ, Henneman L, Visser D, Eidhof I, Van HR, Wieringa B, Canisius SV, Zwart W, Wessels LF, Sweep FC, Bult P, Span PN, van Leeuwen FN, Jalink K (2012) TRPM7 is required for breast tumor cell metastasis. Cancer Res 72:4250–4261CrossRef PubMed
    31.Lowery LA, Van VD (2009) The trip of the tip: understanding the growth cone machinery. Nat Rev Mol Cell Biol 10:332–343CrossRef PubMed PubMedCentral
    32.Zikopoulos B, Barbas H (2010) Changes in prefrontal axons may disrupt the network in autism. J Neurosci 30:14595–14609CrossRef PubMed PubMedCentral
    33.Mingorance-Le MA, O’Connor TP (2009) Neurite consolidation is an active process requiring constant repression of protrusive activity. EMBO J 28:248–260CrossRef
    34.Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM (2003) Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell 114:191–200CrossRef PubMed
    35.Li M, Jiang J, Yue L (2006) Functional characterization of homo- and heteromeric channel kinases TRPM6 and TRPM7. J Gen Physiol 127:525–537CrossRef PubMed PubMedCentral
    36.Chen HC, Xie J, Zhang Z, Su LT, Yue L, Runnels LW (2010) Blockade of TRPM7 channel activity and cell death by inhibitors of 5-lipoxygenase. PLoS One 5:e11161CrossRef PubMed PubMedCentral
    37.Parnas M, Peters M, Dadon D, Lev S, Vertkin I, Slutsky I, Minke B (2009) Carvacrol is a novel inhibitor of Drosophila TRPL and mammalian TRPM7 channels. Cell Calcium 45:300–309CrossRef PubMed PubMedCentral
    38.Qin X, Yue Z, Sun B, Yang W, Xie J, Ni E, Feng Y, Mahmood R, Zhang Y, Yue L (2013) Sphingosine and FTY720 are potent inhibitors of the transient receptor potential melastatin 7 (TRPM7) channels. Br J Pharmacol 168:1294–1312CrossRef PubMed PubMedCentral
    39.Grimm C, Kraft R, Schultz G, Harteneck C (2005) Activation of the melastatin-related cation channel TRPM3 by D-erythro-sphingosine [corrected]. Mol Pharmacol 67:798–805CrossRef PubMed
    40.Ozaki T, Mohammad S, Morioka E, Takiguchi S, Ikeda M (2013) Infant satiety depends on transient expression of cholecystokinin-1 receptors on ependymal cells lining the third ventricle in mice. J Physiol 591:1295–1312CrossRef PubMed PubMedCentral
    41.Schmitz C, Dorovkov MV, Zhao X, Davenport BJ, Ryazanov AG, Perraud AL (2005) The channel kinases TRPM6 and TRPM7 are functionally nonredundant. J Biol Chem 280:37763–37771CrossRef PubMed
    42.Zhang Z, Yu H, Huang J, Faouzi M, Schmitz C, Penner R, Fleig A (2014) The TRPM6 kinase domain determines the Mg.ATP sensitivity of TRPM7/M6 heteromeric ion channels. J Biol Chem 289:5217–5227CrossRef PubMed PubMedCentral
    43.Prescott AR, Comerford JG, Magrath R, Lamb NJ, Warn RM (1988) Effects of elevated intracellular magnesium on cytoskeletal integrity. J Cell Sci 89(Pt 3):321–329PubMed
    44.Krapivinsky G, Krapivinsky L, Manasian Y, Clapham DE (2014) The TRPM7 chanzyme is cleaved to release a chromatin-modifying kinase. Cell 157:1061–1072CrossRef PubMed PubMedCentral
    45.Perraud AL, Zhao X, Ryazanov AG, Schmitz C (2011) The channel-kinase TRPM7 regulates phosphorylation of the translational factor eEF2 via eEF2-k. Cell Signal 23:586–593CrossRef PubMed PubMedCentral
    46.Scheetz AJ, Nairn AC, Constantine-Paton M (2000) NMDA receptor-mediated control of protein synthesis at developing synapses. Nat Neurosci 3:211–216CrossRef PubMed
    47.Gomez TM, Letourneau PC (2014) Actin dynamics in growth cone motility and navigation. J Neurochem 129:221–234CrossRef PubMed PubMedCentral
    48.Wei C, Wang X, Chen M, Ouyang K, Song LS, Cheng H (2009) Calcium flickers steer cell migration. Nature 457:901–905CrossRef PubMed PubMedCentral
    49.Sigurdson WJ, Morris CE (1989) Stretch-activated ion channels in growth cones of snail neurons. J Neurosci 9:2801–2808PubMed
    50.Jacques-Fricke BT, Seow Y, Gottlieb PA, Sachs F, Gomez TM (2006) Ca2+ influx through mechanosensitive channels inhibits neurite outgrowth in opposition to other influx pathways and release from intracellular stores. J Neurosci 26:5656–5664CrossRef PubMed
  • 作者单位:Ekaterina Turlova (1) (2)
    Christine Y. J. Bae (1) (2)
    Marielle Deurloo (2)
    Wenliang Chen (1) (2)
    Andrew Barszczyk (2)
    F. David Horgen (5)
    Andrea Fleig (6) (7)
    Zhong-Ping Feng (2)
    Hong-Shuo Sun (1) (2) (3) (4)

    1. Department of Surgery, Faculty of Medicine, University of Toronto, 1132 Medical Sciences Building, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
    2. Department of Physiology, Faculty of Medicine, University of Toronto, 3306 Medical Sciences Building, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
    5. College of Natural and Computational Sciences, Hawaii Pacific University, Kaneohe, HI, 96744, USA
    6. Center for Biomedical Research, The Queen’s Medical Center, Honolulu, HI, 96720, USA
    7. University of Hawaii Cancer Center and John A. Burns School of Medicine, Honolulu, HI, 96720, USA
    3. Department of Pharmacology & Toxicology, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
    4. Institute of Medical Science, Faculty of Medicine, University of Toronto, 1 King’s College Circle, Toronto, ON, M5S 1A8, Canada
  • 刊物主题:Neurosciences; Neurobiology; Cell Biology; Neurology;
  • 出版者:Springer US
  • ISSN:1559-1182
文摘
Transient receptor potential melastatin 7 (TRPM7) is a calcium-permeable divalent cation channel and mediates neuronal cell death under ischemic stresses. In this study, we investigated the contribution of TRPM7 to neuronal development in mouse primary hippocampal neurons. We demonstrated that TRPM7 channels are highly expressed in the tips of the growth cone. Either knockdown of TRPM7 with target-specific shRNA or blocking channel conductance by a specific blocker waixenicin A enhanced axonal outgrowth in culture. Blocking TRPM7 activity by waixenicin A reduced calcium influx and accelerated the polarization of the hippocampal neurons as characterized by the development of distinct axons and dendrites. Furthermore, TRPM7 coprecipitated and colocalized with F-actin and α-actinin-1 at the growth cone. We conclude that calcium influx through TRPM7 inhibits axonal outgrowth and maturation by regulating the F-actin and α-actinin-1 protein complex. Inhibition of TRPM7 channel promotes axonal outgrowth, suggesting its therapeutic potential in neurodegenerative disorders.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700