Upregulation of HMGB1 in wall of ruptured and unruptured human cerebral aneurysms: preliminary results
详细信息    查看全文
  • 作者:Dingding Zhang ; Wei Wu ; Huiying Yan ; Tianwei Jiang ; Ming Liu…
  • 关键词:Cerebral aneurysms ; Inflammation ; HMGB1 ; Macrophages ; T lymphocytes
  • 刊名:Neurological Sciences
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:37
  • 期:2
  • 页码:219-226
  • 全文大小:1,465 KB
  • 参考文献:1.Agresti A, Lupo R, Bianchi ME, Muller S (2003) HMGB1 interacts differentially with members of the Rel family of transcription factors. Biochem Biophys Res Commun 302:421–426CrossRef PubMed
    2.Aoki T, Kataoka H, Nishimura M, Ishibashi R, Morishita R, Miyamoto S (2012) Regression of intracranial aneurysms by simultaneous inhibition of nuclear factor-kappaB and Ets with chimeric decoy oligodeoxynucleotide treatment. Neurosurgery 70:1534–1543. doi:10.​1227/​NEU.​0b013e318246a390​ CrossRef PubMed
    3.Chalouhi N, Ali MS, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Koch WJ, Dumont AS (2012) Biology of intracranial aneurysms: role of inflammation. J Cereb Blood Flow Metab 32:1659–1676. doi:10.​1038/​jcbfm.​2012.​84 PubMedCentral CrossRef PubMed
    4.de Souza AW, Westra J, Limburg PC, Bijl M, Kallenberg CG (2012) HMGB1 in vascular diseases: its role in vascular inflammation and atherosclerosis. Autoimmun Rev 11:909–917. doi:10.​1016/​j.​autrev.​2012.​03.​007 CrossRef PubMed
    5.Frosen J, Piippo A, Paetau A, Kangasniemi M, Niemela M, Hernesniemi J, Jaaskelainen J (2004) Remodeling of saccular cerebral artery aneurysm wall is associated with rupture—histological analysis of 24 unruptured and 42 ruptured cases. Stroke J Cereb Circ 35:2287–2293. doi:10.​1161/​01.​Str.​0000140636.​30204.​Da CrossRef
    6.Frosen J, Tulamo R, Heikura T, Sammalkorpi S, Niemela M, Hernesniemi J, Levonen AL, Horkko S, Yla-Herttuala S (2013) Lipid accumulation, lipid oxidation, and low plasma levels of acquired antibodies against oxidized lipids associate with degeneration and rupture of the intracranial aneurysm wall. Acta Neuropathol Commun 1:71. doi:10.​1186/​2051-5960-1-71 PubMedCentral CrossRef PubMed
    7.Hasan D, Chalouhi N, Jabbour P, Hashimoto T (2012) Macrophage imbalance (M1 vs. M2) and upregulation of mast cells in wall of ruptured human cerebral aneurysms: preliminary results. J Neuroinflam 9:222. doi:10.​1186/​1742-2094-9-222 CrossRef
    8.Hasan D, Hashimoto T, Kung D, Macdonald RL, Winn HR, Heistad D (2012) Upregulation of cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) in wall of ruptured human cerebral aneurysms: preliminary results. Stroke J Cereb Circ 43:1964–1967. doi:10.​1161/​STROKEAHA.​112.​655829 CrossRef
    9.Hu Y, Zhang Z, Torsney E, Afzal AR, Davison F, Metzler B, Xu Q (2004) Abundant progenitor cells in the adventitia contribute to atherosclerosis of vein grafts in ApoE-deficient mice. J Clin Invest 113:1258–1265. doi:10.​1172/​JCI19628 PubMedCentral CrossRef PubMed
    10.Humphrey JD, Taylor CA (2008) Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu Rev Biomed Eng 10:221–246. doi:10.​1146/​annurev.​bioeng.​10.​061807.​160439 PubMedCentral CrossRef PubMed
    11.Kanellakis P, Agrotis A, Kyaw TS, Koulis C, Ahrens I, Mori S, Takahashi HK, Liu K, Peter K, Nishibori M, Bobik A (2011) High-mobility group box protein 1 neutralization reduces development of diet-induced atherosclerosis in apolipoprotein e-deficient mice. Arterioscler Thromb Vasc Biol 31:313–319. doi:10.​1161/​ATVBAHA.​110.​218669 CrossRef PubMed
    12.Killer-Oberpfalzer M, Aichholzer M, Weis S, Richling B, Jones R, Virmani R, Cruise GM (2012) Histological analysis of clipped human intracranial aneurysms and parent arteries with short-term follow-up. Cardiovasc Pathol 21:299–306. doi:10.​1016/​j.​carpath.​2011.​09.​010 CrossRef PubMed
    13.Kohno T, Anzai T, Kaneko H, Sugano Y, Shimizu H, Shimoda M, Miyasho T, Okamoto M, Yokota H, Yamada S, Yoshikawa T, Okada Y, Yozu R, Ogawa S, Fukuda K (2012) High-mobility group box 1 protein blockade suppresses development of abdominal aortic aneurysm. J Cardiol 59:299–306. doi:10.​1016/​j.​jjcc.​2012.​01.​007 CrossRef PubMed
    14.Kurki MI, Hakkinen SK, Frosen J, Tulamo R, von und zu Fraunberg M, Wong G, Tromp G, Niemela M, Hernesniemi J, Jaaskelainen JE, Yla-Herttuala S (2011) Upregulated signaling pathways in ruptured human saccular intracranial aneurysm wall: an emerging regulative role of Toll-like receptor signaling and nuclear factor-kappaB, hypoxia-inducible factor-1A, and ETS transcription factors. Neurosurgery 68:1667–1675. doi:10.​1227/​NEU.​0b013e318210f001​ CrossRef PubMed
    15.Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342. doi:10.​1038/​nri1594 CrossRef PubMed
    16.Molyneux AJ, Kerr RS, Birks J, Ramzi N, Yarnold J, Sneade M, Rischmiller J (2009) Risk of recurrent subarachnoid haemorrhage, death, or dependence and standardised mortality ratios after clipping or coiling of an intracranial aneurysm in the International Subarachnoid Aneurysm Trial (ISAT): long-term follow-up. Lancet Neurol 8:427–433. doi:10.​1016/​S1474-4422(09)70080-8 PubMedCentral CrossRef PubMed
    17.Nakahara T, Tsuruta R, Kaneko T, Yamashita S, Fujita M, Kasaoka S, Hashiguchi T, Suzuki M, Maruyama I, Maekawa T (2009) High-mobility group box 1 protein in CSF of patients with subarachnoid hemorrhage. Neurocrit Care 11:362–368. doi:10.​1007/​s12028-009-9276-y CrossRef PubMed
    18.Siow RC, Churchman AT (2007) Adventitial growth factor signalling and vascular remodelling: potential of perivascular gene transfer from the outside-in. Cardiovasc Res 75:659–668. doi:10.​1016/​j.​cardiores.​2007.​06.​007 CrossRef PubMed
    19.Starke RM, Chalouhi N, Jabbour PM, Tjoumakaris SI, Gonzalez LF, Rosenwasser RH, Wada K, Shimada K, Hasan DM, Greig NH, Owens GK, Dumont AS (2014) Critical role of TNF-alpha in cerebral aneurysm formation and progression to rupture. J Neuroinflam 11:77. doi:10.​1186/​1742-2094-11-77 CrossRef
    20.Sun Q, Wu W, Hu YC, Li H, Zhang D, Li S, Li W, Li WD, Ma B, Zhu JH, Zhou ML, Hang CH (2014) Early release of high-mobility group box 1 (HMGB1) from neurons in experimental subarachnoid hemorrhage in vivo and in vitro. J Neuroinflam 11:106. doi:10.​1186/​1742-2094-11-106 CrossRef
    21.Tsung A, Tohme S, Billiar TR (2014) High-mobility group box-1 in sterile inflammation. J Intern Med 276:425–443. doi:10.​1111/​joim.​12276 CrossRef PubMed
    22.Wardlaw JM, White PM (2000) The detection and management of unruptured intracranial aneurysms. Brain 123:205–221. doi:10.​1093/​brain/​123.​2.​205 CrossRef PubMed
    23.Wiebers DO, Whisnant JP, Huston J 3rd, Meissner I, Brown RD Jr, Piepgras DG, Forbes GS, Thielen K, Nichols D, O’Fallon WM, Peacock J, Jaeger L, Kassell NF, Kongable-Beckman GL, Torner JC (2003) Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet 362:103–110CrossRef PubMed
    24.Zhang D, Hu Y, Sun Q, Zhao J, Cong Z, Liu H, Zhou M, Li K, Hang C (2013) Inhibition of transforming growth factor beta-activated kinase 1 confers neuroprotection after traumatic brain injury in rats. Neuroscience 238:209–217. doi:10.​1016/​j.​neuroscience.​2013.​02.​022 CrossRef PubMed
    25.Zhu XD, Chen JS, Zhou F, Liu QC, Chen G, Zhang JM (2012) Relationship between plasma high mobility group box-1 protein levels and clinical outcomes of aneurysmal subarachnoid hemorrhage. J Neuroinflam 9:194. doi:10.​1186/​1742-2094-9-194 CrossRef
  • 作者单位:Dingding Zhang (1)
    Wei Wu (1)
    Huiying Yan (1)
    Tianwei Jiang (1)
    Ming Liu (2)
    Zhuang Yu (1)
    Hua Li (1)
    Chunhua Hang (1) (2)

    1. Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People’s Republic of China
    2. Department of Neurosurgery, School of Medicine, Southern Medical University (Guangzhou), Jinling Hospital, 305 East Zhongshan Road, Nanjing, 210002, Jiangsu, People’s Republic of China
  • 刊物类别:Medicine
  • 刊物主题:Medicine & Public Health
    Neurology
    Neuroradiology
    Neurosurgery
    Psychiatry
  • 出版者:Springer Milan
  • ISSN:1590-3478
文摘
A growing body of evidence suggests that inflammation plays a crucial role in cerebral aneurysm initiation, progression, and rupture. High-mobility group box 1 (HMGB1) is a non-histone nuclear protein that can serve as an alarmin to drive the pathogenesis of inflammatory disease. The purpose of this study was to investigate the expression of HMGB1 in the wall of ruptured and unruptured human cerebral aneurysms. Human cerebral aneurysms (25 ruptured and 16 unruptured) were immunohistochemically stained for HMGB1. As controls, four specimens of the middle cerebral arteries obtained at autopsy were also immunostained. Immunofluorescence double staining was used to determine HMGB1 cellular distribution. HMGB1 was nearly undetectable in the controls. All aneurysm tissues stained positive for HMGB1 monoclonal antibody, and expression of HMGB1 was more abundant in ruptured aneurysm tissue than unruptured aneurysms (p < 0.05). Furthermore, the expression of HMGB1 had no correlation with aneurysm size and time resected after the rupture. HMGB1 nuclear immunoreactivity was co-localized with immunoreactivity of CD3 in T lymphocytes, CD20 in B lymphocytes, CD68 in macrophages, α-SMA in smooth muscle cells, and CD31 in endothelial cells. Cytoplasmic HMGB1 localization was also detected in macrophages and T lymphocytes. Taken together, HMGB1 is expressed in the wall of human cerebral aneurysms and is more abundant in ruptured aneurysms than in unruptured ones. These data indicate a possible role of HMGB1 in the pathophysiology of human cerebral aneurysms. Keywords Cerebral aneurysms Inflammation HMGB1 Macrophages T lymphocytes

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700