Crop to wild introgression in lettuce: following the fate of crop genome segments in backcross populations
详细信息    查看全文
  • 作者:Brigitte Uwimana (1) <br> Marinus JM Smulders (2) <br> Danny AP Hooftman (3) <br> Yorike Hartman (4) <br> Peter H van Tienderen (4) <br> Johannes Jansen (5) <br> Leah K McHale (6) <br> Richard W Michelmore (7) <br> Richard GF Visser (1) <br> Clemens CM van de Wiel (2) <br>
  • 刊名:BMC Plant Biology
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:12
  • 期:1
  • 全文大小:318KB
  • 参考文献:1. Van de Wiel C, Groot M, Den Nijs H: Gene flow from crops to wild plants and its population-ecological consequences in the context of GM-crop biosafety, including some recent experiences from lettuce. In / In Environmental Costs and Benefits of Transgenic Crops. Wageningen UR Frontis Series Volume 7. Edited by: Wesseler J. Dordrecht: Springer; 2005:97鈥?10. CrossRef <br> 2. Pilson D, Prendeville HR: Ecological effects of transgenic crops and the escape of transgenes into wild populations. / Annu Rev Ecol Evol Syst 2004, 35:149鈥?74. CrossRef <br> 3. Snow AA, Andow DA, Gepts P, Hallerman EM, Power A, Tiedje JM, Wolfenbarger LL: Genetically engineered organisms and the environment: current status and recommendations. / Ecol Appl 2005, 15:377鈥?04. CrossRef <br> 4. Tiedje JM, Colwell RK, Grossman YL, Hodson RW, Lenski RE, Mack RN, Regal PJ: The planned introduction of genetically engineered organisms: ecological considerations and recommendations. / Ecology 1989, 70:298鈥?15. CrossRef <br> 5. Ellstrand NC: Current knowledge of gene flow in plants: implications for transgene flow. / Philos Trans R Soc Lond B 2003, 358:1163鈥?170. b.2003.1299">CrossRef <br> 6. Ellstrand NC, Prentice HC, Hancock JF: Gene flow and Introgression from domesticated plants into their wild relatives. / Annu Rev Ecol Syst 1999, 30:539鈥?63. CrossRef <br> 7. Baack EJ, Sapir Y, Chapman MA, Burke JM, Rieseberg LH: Selection on domestication traits and quantitative trait loci in crop-wild sunflower hybrids. / Mol Ecol 2008, 17:666鈥?77. CrossRef <br> 8. Dechaine JM, Burger JC, Chapman MA, Seiler GJ, Brunick R, Knapp SJ, Burke JM: Fitness effects and genetic architecture of plant-herbivore interactions in sunflower crop-wild hybrids. / New Phytol 2009, 184:828鈥?41. CrossRef <br> 9. Hooftman DAP, Hartman Y, Oostermeijer JGB, Den Nijs HCM: Existence of vigorous lineages of crop-wild hybrids in Lettuce under field conditions. / Environ Biosafety Res 2009, 4:203鈥?17. br/2010001">CrossRef <br> 10. Snow AA, Pilson D, Rieseberg LH, Paulsen MJ, Pleskac N, Reagon MR, Wolf DE, Selbo SM: A Bt transgene reduces herbivory and enhances fecundity in wild sunflower. / Ecol Appl 2003, 13:279鈥?86. CrossRef <br> 11. Burke JM, Arnold ML: Genetics and the fitness of hybrids. / Annu Rev Genet 2001, 35:31鈥?2. CrossRef <br> 12. Lexer C, Welch ME, Raymond O, Rieseberg LH: The origin of ecological divergence in Helianthus paradoxus (Asteraceae): selection on transgressive characters in a novel hybrid habitat. / Evolution 2003, 57:1989鈥?000. <br> 13. Rieseberg LH, Archer MA, Wayne RK: Transgressive segregation, adaptation and speciation. / Heredity 1999, 83:363鈥?72. CrossRef <br> 14. Hooftman DAP, Flavell AJ, Jansen H, Den Nijs HCM, Syed NH, S酶rensen AP, Orozcoter Wengel P, Van de Wiel CCM: Locus-dependent selection in crop-wild hybrids of lettuce under field conditions and its implication for GM crop development. / Evol Appl 2011, 4:648鈥?59. CrossRef <br> 15. Koopman WJM, Li Y, Coart E, van de Weg WE, Vosman B, Rold谩n-Ruiz I, Smulders MJM: Linked versus unlinked markers: multilocus microsatellite haplotype sharing as a tool to estimate gene flow and introgression. / Mol Ecol 2007, 16:243鈥?56. CrossRef <br> 16. Barton NH: Genetic hitchhiking. / Philos Trans Roy Soc Lond B 2000, 355:1553鈥?562. b.2000.0716">CrossRef <br> 17. Kwit C, Moon HS, Warwick SI, Stewart CN Jr: Transgene introgression in crop relatives: molecular evidence and mitigation strategies. / Trends Biotechnol 2011, 29:284鈥?93. btech.2011.02.003">CrossRef <br> 18. Stewart CN Jr, Halfhill MD, Warwick SI: Transgene introgression from genetically modified crops to their wild relatives. / Nature Rev Genet 2003, 4:806鈥?17. CrossRef <br> 19. Chapman MA, Burke JM: Letting the gene out of the bottle: the population genetics of genetically modified crops. / New Phytol 2006, 170:429鈥?43. CrossRef <br> 20. De Vries IM: Crossing experiments of lettuce cultivars and species ( Lactuca sect. Lactuca , Compositae). / Plant Syst Evol 1990, 171:233鈥?48. CrossRef <br> 21. D'Andrea L, Felber F, Guadagnuolo R: Hybridization rates between lettuce ( Lactuca sativa ) and its wild relative ( L. serriola ) under field conditions. / Environ Biosafety Res 2008, 7:61鈥?1. br:2008006">CrossRef <br> 22. Thompson RC, Whitaker TW, Bohn GW, Van Horn CW: Natural cross-pollination in lettuce. / Am Soc Hort Sci 1958, 72:403鈥?09. <br> 23. Uwimana B, D'Andrea L, Felber F, Hooftman DAP, den Nijs HCM, Smulders MJM, Visser RGF, van de Wiel CCM: A Bayesian analysis of gene flow from crops to their wild relatives: cultivated ( Lactuca sativa L.) and prickly lettuce ( L. serriola L.) and the recent expansion of L. serriola in Europe. / Mol Ecol, in press. doi: 10.1111/j.1365鈥?94X.2012.05489.x doi: 10.1111/j.1365-294X.2012.05489.x <br> 24. Warner RM, Walworth AE: Quantitative inheritance of crop timing traits in interspecific hybrid petunia populations and interactions with crop quality parameters. / J Heredity 2010, 101:308鈥?16. CrossRef <br> 25. Dechaine JM, Burger JC, Burke JM: Ecological patterns and genetic analysis of post-dispersal seed predation in sunflower ( Helianthus annuus ) crop-wild hybrids. / Mol Ecol 2010, 19:3477鈥?488. CrossRef <br> 26. Song X, Wang Z, Zuo J, Huangfu C, Qiang S: Potential gene flow of two herbicide-tolerant transgenes from oilseed rape to wild B. juncea var. gracilis . / Theor Appl Genet 2010, 120:1501鈥?510. CrossRef <br> 27. Boyer JS: Plant productivity and environment. / Science 1982, 218:443鈥?48. CrossRef <br> 28. Munns R, James RA: Screening methods for salinity tolerance: a case study with tetraploid wheat. / Plant Soil 2003, 253:201鈥?18. CrossRef <br> 29. White PJ, Brown PH: Plant nutrition for sustainable development and global health. / Ann Bot 2010, 105:1073鈥?080. b/mcq085">CrossRef <br> 30. Witcombe JR, Hollington PA, Howarth CJ, Reader S, Steele KA: Breeding for abiotic stresses for sustainable agriculture. / Philos Trans Roy Soc B 2008, 363:703鈥?16. b.2007.2179">CrossRef <br> 31. Tester M, Langridge P: Breeding technologies to increase crop production in a changing world. / Science 2010, 327:818鈥?22. CrossRef <br> 32. Truco MJ, Antonise R, Lavelle D, Ochoa O, Kozik A, Witsenboer H, Fort SB, Jeuken MJM, Kesseli RV, Lindhout P, Michelmore RW, Peleman J: A high-density, integrated genetic linkage map of lettuce ( Lactuca spp.). / Theor Appl Genet 2007, 115:735鈥?46. CrossRef <br> 33. Hauser TP, J酶rgensen RB, 脴sterg氓rd H: Fitness of backcross and F2 hybrids between weedy Brassica rapa and oilseed rape ( B. napus ). / Heredity 1998, 81:436鈥?43. CrossRef <br> 34. Mercer KL, Andow DA, Wyse DL, Shaw RG: Stress and domestication traits increase the relative fitness of crop-wild hybrids in sunflower. / Ecol Lett 2007, 10:383鈥?93. CrossRef <br> 35. Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD: Advanced backcross QTL analysis of a Lycopersicon esculentum Lycopersicon parviflorum cross. / Theor Appl Genet 2000, 100:1025鈥?042. CrossRef <br> 36. Ho JC, McCouch SR, Smith SE: Improvement of hybrid yield by advanced backcross QTL analysis in elite maize. / Theor Appl Genet 2002, 105:440鈥?48. CrossRef <br> 37. Robert VJM, West MAL, Inai S, Caines A, Arntzen JK, Smith JK, StClair DA: Marker-assisted introgression of blackmold resistance QTL alleles from wild Lycopersicon cheesmanii to cultivated tomato L. esculentum ) and evaluation of QTL phenotypic effects. / Mol Breeding 2001, 8:217鈥?33. CrossRef <br> 38. Tanksley SD, Nelson JC: Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. / Theor Appl Genet 1996, 92:191鈥?03. CrossRef <br> 39. Jeuken MJW, Pelgrom K, Stam P, Lindhout P: Efficient QTL detection for nonhost resistance in wild lettuce: backcross inbred lines versus F b class="a-plus-plus"> 2 b> population. / Theor Appl Genet 2008, 116:845鈥?57. CrossRef <br> 40. Malmberg RL, Held S, Waits A, Mauricio R: Epistasis for fitness-related quantitative traits in Arabidopsis thaliana grown in the field and in the greenhouse. / Genetics 2005, 171:2013鈥?027. CrossRef <br> 41. Mei HW, Luo LJ, Ying CS, Wang YP, Yu XQ, Guo LB, Paterson AH, Li ZK: Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. / Theor Appl Genet 2003, 107:89鈥?01. <br> 42. Latta RG, Gardner KM, Johansen-Morris AD: Hybridization, recombination, and the genetic basis of fitness variation across environments in Avena barbata . / Genetica 2007, 129:167鈥?77. CrossRef <br> 43. Lexer C, Welch ME, Durphy JL, Rieseberg LH: Natural selection for salt tolerance quantitative trait loci (QTLs) in wild sunflower hybrids: implications for the origin of Helianthus paradoxus , a diploid hybrid species. / Mol Ecol 2003, 12:1225鈥?235. CrossRef <br> 44. Hooftman DAP, Oostermeijer JGB, Jacobs MMJ, Den Nijs HCM: Demographic vital rates determine the performance advantage of crop-wild hybrids in lettuce. / J Appl Ecol 2005, 42:1086鈥?095. CrossRef <br> 45. Nagata RT: Clip-and-wash method of emasculation for lettuce. / HortSci 1992, 27:907鈥?08. <br> 46. Ryder EJ: / Lettuce, Endive and Chicory. Wallingford: CAB International; 1999. <br> 47. Odong TL, van Heerwaarden J, Jansen J, van Hintum TJL, van Eeuwijk FA: Statistical techniques for constructing reference sets of accessions and microsatellite markers. / Crop Sci 2011, 51:2401鈥?411. CrossRef <br> 48. Argyris J, Truco MJ, Ochoa O, Knapp SJ, Still DW, Lenssen GM, Schut JW, Michelmore RW, Bradford KJ: Quantitative trait loci associated with seed and seedling traits in Lactuca . / Theor Appl Genet 2005, 111:1365鈥?376. CrossRef <br> 49. Zhang FZ, Wagstaff C, Rae AM, Sihota AK, Keevil CW, Rothwell SD, Clarkson GJJ, Michelmore RW, Truco MJ, Dixon MS, Taylor G: QTLs for shelf life in lettuce co-locate with those for leaf biophysical properties but not with those for leaf developmental traits. / J Exp Bot 2007, 58:1433鈥?449. b/erm006">CrossRef <br> 50. Van Ooijen JW: / JoinMap庐 4, Software for the calculation of genetic linkage maps in experimental populations. Edited by: Kyazma BV. Wageningen; 2006. <br> 51. Voorrips RE: MapChart: Software for the graphical presentation of linkage maps and QTLs. / J Hered 2002, 93:77鈥?8. CrossRef <br> 52. Payne RW, Murray DA, Harding SA, Baird DB, Soutar DM: / An introduction to GenStat for Windows (14th Edition). Hemel Hempstead: VSN International; 2011. <br> 53. Chahal GS, Gosal SS: / Principles and procedures of plant breeding: Biotechnological and conventional approaches. Harrow: Alpha Science International Ltd.; 2002. <br> 54. Li J, Ji L: Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix. / Heredity 2005, 95:221鈥?27. CrossRef <br> 55. Malosetti M, Voltas J, Romagosa I, Ullrich SE, van Eeuwijk FA: Mixed models including environmental covariables for studying QTL by environment interaction. / Euphytica 2004, 137:139鈥?45. CrossRef <br> 56. Mathews KL, Malosetti M, Chapman S, McIntyre L, Reynolds M, Shorter R, van Eeuwijk F: Multi-environment QTL mixed models for drought stress adaptation in wheat. / Theor Appl Genet 2008, 117:1077鈥?091. CrossRef <br> 57. Bland JM, Altman DG: Multiple significance tests: the Bonferroni method. / Brit Med J 1995, 310:170. bmj.310.6973.170">CrossRef <br>
  • 作者单位:Brigitte Uwimana (1) <br> Marinus JM Smulders (2) <br> Danny AP Hooftman (3) <br> Yorike Hartman (4) <br> Peter H van Tienderen (4) <br> Johannes Jansen (5) <br> Leah K McHale (6) <br> Richard W Michelmore (7) <br> Richard GF Visser (1) <br> Clemens CM van de Wiel (2) <br><br>1. Wageningen UR Plant Breeding, Postbus 386, 6700AJ, Wageningen, the Netherlands <br> 2. Wageningen UR Plant Breeding, Postbus 16, 6700AA, Wageningen, the Netherlands <br> 3. Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK <br> 4. Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Postbus 94248, 1090 GE, Amsterdam, the Netherlands <br> 5. Wageningen UR Plant Biometris, Postbus 100, 6700AC, Wageningen, the Netherlands <br> 6. Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA <br> 7. Genome Center and Department of Plant Sciences, University of California Davis, Davis, CA, 95616-8816, USA <br>
文摘
Background After crop-wild hybridization, some of the crop genomic segments may become established in wild populations through selfing of the hybrids or through backcrosses to the wild parent. This constitutes a possible route through which crop (trans)genes could become established in natural populations. The likelihood of introgression of transgenes will not only be determined by fitness effects from the transgene itself but also by the crop genes linked to it. Although lettuce is generally regarded as self-pollinating, outbreeding does occur at a low frequency. Backcrossing to wild lettuce is a likely pathway to introgression along with selfing, due to the high frequency of wild individuals relative to the rarely occurring crop-wild hybrids. To test the effect of backcrossing on the vigour of inter-specific hybrids, Lactuca serriola, the closest wild relative of cultivated lettuce, was crossed with L. sativa and the F1b> hybrid was backcrossed to L. serriola to generate BC1b> and BC2b> populations. Experiments were conducted on progeny from selfed plants of the backcrossing families (BC1b>S1b> and BC2b>S1b>). Plant vigour of these two backcrossing populations was determined in the greenhouse under non-stress and abiotic stress conditions (salinity, drought, and nutrient deficiency). Results Despite the decreasing contribution of crop genomic blocks in the backcross populations, the BC1b>S1b> and BC2b>S1b> hybrids were characterized by a substantial genetic variation under both non-stress and stress conditions. Hybrids were identified that performed equally or better than the wild genotypes, indicating that two backcrossing events did not eliminate the effect of the crop genomic segments that contributed to the vigour of the BC1b> and BC2b> hybrids. QTLs for plant vigour under non-stress and the various stress conditions were detected in the two populations with positive as well as negative effects from the crop. Conclusion As it was shown that the crop contributed QTLs with either a positive or a negative effect on plant vigour, we hypothesize that genomic regions exist where transgenes could preferentially be located in order to mitigate their persistence in natural populations through genetic hitchhiking.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700