Hierarchical LiMn0.5Fe0.5PO4/C nanorods with excellent electrochemical performance synthesized by rheological phase method as cathode for lithium ion battery
详细信息    查看全文
  • 作者:Huihui Shen ; Wei Xiang ; Xiaxing Shi ; Benhe Zhong ; Heng Liu
  • 关键词:LiMn0.5Fe0.5PO4/C ; Polyethylene ; glycol 4000 ; Nanorods ; Rheological phase method ; Cathode materials
  • 刊名:Ionics
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:22
  • 期:2
  • 页码:193-200
  • 全文大小:1,291 KB
  • 参考文献:1.Padhi AK, Nanjundaswamy KS, Goodenough JB (1997) Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J Electrochem Soc 1444:1188–1194CrossRef
    2.Hu C, Yi H, Fang H, Yang B, Yao Y, Ma W, Dai Y (2010) Improving the electrochemical activity of LiMnPO4 via Mn-site co-substitution with Fe and Mg. Electrochem Commun 1212:1784–1787CrossRef
    3.Oh S-M, Myung S-T, Choi YS, Oh KH, Sun Y-K (2011) Co-precipitation synthesis of micro-sized spherical LiMn0.5Fe0.5PO4 cathode material for lithium batteries. J Mater Chem 2148:19368–19374CrossRef
    4.Akimoto S, Taniguchi I (2013) Synthesis and characterization of LiCo1/3Mn1/3Fe1/3PO4/C nanocomposite cathode of lithium batteries with high rate performance. J Power Sources 242:627–630CrossRef
    5.Ni J, Gao L (2011) Effect of copper doping on LiMnPO4 prepared via hydrothermal route. J Power Sources 19615:6498–6501CrossRef
    6.Zhu H-J, Zhai W, Yang M, X-m L, Chen Y-C, Yang H, Shen X-d (2014) Synthesis and characterization of LiMnPO4/C nano-composites from manganese(II) phosphate trihydrate precipitated from a micro-channel reactor approach. RSC Adv 449:25625–25632CrossRef
    7.Yamada A, Kudo Y, Liu KY (2001) Reaction mechanism of the olivine-type Li x (Mn0.6Fe0.4)PO4 (0 ≤ x ≤ 1). J Electrochem Soc 1487:A747–A754CrossRef
    8.Chen GY, Wilcox JD, Richardson TJ (2008) Improving the performance of lithium manganese phosphate through divalent cation substitution. Electrochem Solid-State Lett 1111:A190–A194CrossRef
    9.Liu W, Gao P, Mi Y, Chen J, Zhou H, Zhang X (2013) Fabrication of high tap density LiFe0.6Mn0.4PO4/C microspheres by a double carbon coating-spray drying method for high rate lithium ion batteries. J Mater Chem A 17:2411–2417CrossRef
    10.Ni J, Han Y, Gao L, Lu L (2013) One-pot synthesis of CNT-wired LiCo0.5Mn0.5PO4 nanocomposites. Electrochem Commun 31:84–87CrossRef
    11.Hong J, Wang F, Wang X, Graetz J (2011) LiFe x Mn1-x PO4: a cathode for lithium-ion batteries. J Power Sources 1967:3659–3663CrossRef
    12.Zou Q-Q, Zhu G-N, Xia Y-Y (2012) Preparation of carbon-coated LiFe0.2Mn0.8PO4 cathode material and its application in a novel battery with Li4Ti5O12 anode. J Power Sources 206:222–229CrossRef
    13.Oh S-M, Jung H-G, Yoon CS, Myung S-T, Chen Z, Amine K, Sun Y-K (2011) Enhanced electrochemical performance of carbon-LiMn1-x Fe x PO4 nanocomposite cathode for lithium-ion batteries. J Power Sources 19616:6924–6928CrossRef
    14.Saravanan K, Ramar V, Balaya P, Vittal JJ (2011) Li(Mn x Fe1-x )PO4/C (x = 0.5, 0.75 and 1) nanoplates for lithium storage application. J Mater Chem 2138:14925–14935CrossRef
    15.Zhang B, Wang X, Li H, Huang X (2011) Electrochemical performances of LiFe1-x Mn x PO4 with high Mn content. J Power Sources 19616:6992–6996CrossRef
    16.Gan Y, Chen C, Liu J, Bian P, Hao H, Yu A (2015) Enhancing the performance of LiMnPO4/C composites through Cr doping. J Alloys Compd 620:350–357CrossRef
    17.Li BZ, Wang Y, Xue L, Li XP, Li WS (2013) Acetylene black-embedded LiMn0.8Fe0.2PO4/C composite as cathode for lithium ion battery. J Power Sources 232:12–16CrossRef
    18.Zuo P, Cheng G, Wang L, Ma Y, Du C, Cheng X, Wang Z, Yin G (2013) Ascorbic acid-assisted solvothermal synthesis of LiMn0.9Fe0.1PO4/C nanoplatelets with enhanced electrochemical performance for lithium ion batteries. J Power Sources 243:872–879CrossRef
    19.Huo Z-Q, Cui Y-T, Wang D, Dong Y, Chen L (2014) The influence of temperature on a nutty-cake structural material: LiMn1-x Fe x PO4 composite with LiFePO4 core and carbon outer layer for lithium-ion battery. J Power Sources 245:331–336CrossRef
    20.Xiao PF, Ding B, Lai MO, Lu L (2013) High performance LiMn1-x Fe x PO4 (0 ≤ x ≤ 1) synthesized via a facile polymer-assisted mechanical activation. J Electrochem Soc 1606:A918–A926CrossRef
    21.Li Y, Hong L, Sun J, Wu F, Chen S (2012) Electrochemical performance of Li3V2(PO4)3/C prepared with a novel carbon source, EDTA. Electrochim Acta 85:110–115CrossRef
    22.Qiao YQ, Wang XL, Zhou JP, Zhang J, Gu CD, Tu JP (2012) Synthesis and electrochemical performance of rod-like LiV3O8 cathode materials for rechargeable lithium batteries. J Power Sources 198:287–293CrossRef
    23.Yanying W, Yan T, Benhe Z, Heng L, Yanjun Z, Xiaodong G (2014) Facile synthesis of Li 3V 2(PO 4) 3/C nano-flakes with high-rate performance as cathode material for Li-ion battery. J Solid State Electrochem 181:215–221
    24.Kosova NV, Devyatkina ET, Slobodyuk AB, Petrov SA (2012) Submicron LiFe1-y Mn y PO4 solid solutions prepared by mechanochemically assisted carbothermal reduction: the structure and properties. Electrochim Acta 59:404–411CrossRef
    25.Zhong Y-J, Li J-T, Wu Z-G, Guo X-D, Zhong B-H, Sun S-G (2013) LiMn0.5Fe0.5PO4 solid solution materials synthesized by rheological phase reaction and their excellent electrochemical performances as cathode of lithium ion battery. J Power Sources 234:217–222CrossRef
    26.Song J, Wang L, Shao G, Shi M, Ma Z, Wang G, Song W, Liu S, Wang C (2014) Controllable synthesis, morphology evolution and electrochemical properties of LiFePO4 cathode materials for Li-ion batteries. Phys Chem Chem Phys 1617:7728–7733CrossRef
    27.Yang S-L, Ma R-G, Hu M-J, Xi L-J, Lu Z-G, Chung CY (2012) Solvothermal synthesis of nano-LiMnPO4 from Li3PO4 rod-like precursor: reaction mechanism and electrochemical properties. J Mater Chem 2248:25402–25408CrossRef
    28.Miao X, Yan Y, Wang C, Cui L, Fang J, Yang G (2014) Optimal microwave-assisted hydrothermal synthesis of nanosized xLi2MnO3 · (1 − x) LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium ion battery. J Power Sources 247:219–227CrossRef
    29.Guo XP, Wang M, Huang XL, Zhao PF, Liu XL, Che RC (2013) Direct evidence of antisite defects in LiFe0.5Mn0.5PO4 via atomic-level HAADF-EELS. J Mater Chem A 131:8775–8781CrossRef
    30.Saravanan K, Vittal JJ, Reddy MV, Chowdari BVR, Balaya P (2010) Storage performance of LiFe1-x Mn x PO4 nanoplates (x = 0, 0.5, and 1). J Solid State Electrochem 1410:1755–1760CrossRef
    31.Zong J, Peng Q, Yu J, Liu X (2013) Novel precursor of Mn(PO3(OH))center dot 3H2O for synthesizing LiMn0.5Fe0.5PO4 cathode material. J Power Sources 228:214–219CrossRef
    32.Dong Y, Zhao Y, Duan H, Liang Z (2014) Enhanced electrochemical performance of LiMnPO4 by Li+-conductive Li3VO4 surface coatings. Electrochim Acta 132:244–250CrossRef
    33.Ni J, Morishita M, Kawabe Y, Watada M, Takeichi N, Sakai T (2010) Hydrothermal preparation of LiFePO4 nanocrystals mediated by organic acid. J Power Sources 1959:2877–2882CrossRef
    34.Xiang W, Zhong YJ, Ji JY, Tang Y, Shen HH, Guo XD, Zhong BH, Dou SX, Zhang ZY (2015) Hydrothermal synthesis, evolution, and electrochemical performance of LiMn0.5Fe0.5PO4 nanostructures. Phys Chem Chem Phys 17:18629–18637CrossRef
  • 作者单位:Huihui Shen (1)
    Wei Xiang (1)
    Xiaxing Shi (1)
    Benhe Zhong (1)
    Heng Liu (2)

    1. College of Chemical Engineering, Sichuan University, Chengdu, 610065, People’s Republic of China
    2. College of Material Science and Engineering, Sichuan University, Chengdu, 610065, People’s Republic of China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Electrochemistry
    Materials Science
    Physical Chemistry
    Condensed Matter
    Renewable Energy Sources
    Electrical Power Generation and Transmission
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1862-0760
文摘
The hierarchical LiMn0.5Fe0.5PO4/C (LMFP) nanorods were first successfully synthesized by rheological phase method using polyethylene glycol 4000 (PEG 4000) as a template reagent. The physical and electrochemical properties of the LiMn0.5Fe0.5PO4/C were characterized by TG-DTG, XRD, FTIR, SEM, TEM, EIS and galvanostatic charge-discharge measurements. The results reveal that the PEG-LMFP/C synthesized with the assistance of PEG 4000 shows unique bundle-type shape assembled of nanorods, while the LMFP/C synthesized without PEG 4000 presents a platelet-like shape with some agglomeration. Besides, a uniformly carbon layer coating on the surface of the PEG-LMFP/C can be seen from TEM images. The PEG-LMFP/C exhibits high specific capacity and superior rate performance with discharge capacities of 162, 133, 108, 95, and 78 mAh · g−1 at 0.1, 1, 5, 10, and 20 C rates, respectively. It is demonstrated that the synthesis of LMFP/C with PEG 4000 can significantly decrease the characteristic sizes of the crystals, resulting in improved electrochemical performance. Keywords LiMn0.5Fe0.5PO4/C Polyethylene-glycol 4000 Nanorods Rheological phase method Cathode materials

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700