Constitutive Flow Behavior and Hot Workability of AerMet100 at Elevated Temperatures
详细信息    查看全文
  • 作者:Zhanwei Yuan (1)
    Fuguo Li (1)
    Huijuan Qiao (1)
    Guoliang Ji (2)
  • 关键词:AerMet100 ; constitutive equation ; processing maps
  • 刊名:Journal of Materials Engineering and Performance
  • 出版年:2014
  • 出版时间:June 2014
  • 年:2014
  • 卷:23
  • 期:6
  • 页码:1981-1999
  • 全文大小:
  • 参考文献:1. Y. Lin, M.-S. Chen, and J. Zhong, Constitutive Modeling for Elevated Temperature Flow Behavior of 42CrMo Steel, / Compos. Mater. Sci., 2008, 42(3), p 470-77 CrossRef
    2. J.H. Sung, J.H. Kim, and R. Wagoner, A plastic constitutive equation incorporating strain, strain-rate, and temperature, / Int. J. Plast., 2010, 26(12), p 1746-771 CrossRef
    3. G.R. Johnson and W.H. Cook, / A Constitutive Model and Data for Metals Subjected to Large Strains, High Strain Rates and High Temperatures, International Ballistics Committee, The Hague, Netherlands, 1983
    4. F.J. Zerilli and R.W. Armstrong, Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations, / J. Appl. Phys., 1987, 61(5), p 1816-825 CrossRef
    5. U.F. Kocks, Realistic Constitutive Relations for Metal Plasticity, / Mater. Sci. Eng. A, 2001, 317(1-), p 181-87 CrossRef
    6. A.S. Khan, R. Kazmi, and B. Farrokh, Multiaxial and Non-proportional Loading Responses, Anisotropy and Modeling of Ti-6Al-4V Titanium Alloy Over Wide Ranges of Strain Rates and Temperatures, / Int. J. Plast., 2007, 23(6), p 931-50 CrossRef
    7. D. Samantaray, S. Mandal, and A. Bhaduri, A Comparative Study on Johnson Cook, Modified Zerilli-Armstrong and Arrhenius-Type Constitutive Models to Predict Elevated Temperature Flow Behaviour in Modified 9Cr-1Mo Steel, / Compos. Mater. Sci., 2009, 47(2), p 568-76 CrossRef
    8. G. Ji et al., A Comparative Study on Arrhenius-Type Constitutive Model and Artificial Neural Network Model to Predict High-Temperature Deformation Behaviour in Aermet100 Steel, / Mater. Sci. Eng. A, 2011, 528(13), p 4774-782 CrossRef
    9. Y. Prasad et al., Modeling of Dynamic Material Behavior in Hot Deformation: Forging of Ti-6242, / Metall. Mater. Trans. A, 1984, 15(10), p 1883-892 CrossRef
    10. Y. Prasad, Processing Maps: A Status Report, / J. Mater. Eng. Perform., 2003, 12(6), p 638-45 CrossRef
    11. N. Srinivasan, Y. Prasad, and P. Rama Rao, Hot Deformation Behaviour of Mg-3Al Alloy—A Study Using Processing Map, / Mater. Sci. Eng. A, 2008, 476(1), p 146-56 CrossRef
    12. Y. Prasad and K. Rao, Processing Maps and Rate Controlling Mechanisms of Hot Deformation of Electrolytic Tough Pitch Copper in the Temperature Range 300-950°C, / Mater. Sci. Eng. A, 2005, 391(1), p 141-50 CrossRef
    13. J.C. Malas and V. Seetharaman, Using Material Behavior Models to Develop Process Control Strategies, / J. Oper. Manag., 1992, 44(6), p 8-3
    14. J. Malas, S. Venugopal, and T. Seshacharyulu, Effect of Microstructural Complexity on the Hot Deformation Behavior of Aluminum alloy 2024, / Mater. Sci. Eng. A, 2004, 368(1), p 41-7 CrossRef
    15. S. Murty and B.N. Rao, On the Development of Instability Criteria During Hotworking with Reference to IN 718, / Mater. Sci. Eng. A, 1998, 254(1), p 76-2 CrossRef
    16. S. Narayana Murty, B. Nageswara Rao, and B. Kashyap, Identification of Flow Instabilities in the Processing Maps of AISI, 304 Stainless Steel, / J. Mater. Process. Technol., 2005, 166(2), p 268-78 CrossRef
    17. G. Ji et al., Development and Validation of a Processing Map for Aermet100 Steel, / Mater. Sci. Eng. A, 2010, 527(4), p 1165-171 CrossRef
    18. M. Xiao et al., Constitutive Equation for Elevated Temperature Flow Behavior of TiNiNb Alloy Based on Orthogonal Analysis, / Mater. Des., 2012, 35, p 184-93 CrossRef
    19. Z. Yuan et al., A Modified Constitutive Equation for Elevated Temperature Flow Behavior of Ti-6Al-4V Alloy Based on Double Multiple Nonlinear Regression, / Mater. Sci. Eng. A, 2013, 578, p 260-70 CrossRef
    20. H.J. McQueen, Development of Dynamic Recrystallization Theory, / Mater. Sci. Eng. A, 2004, 387-89, p 203-08 CrossRef
    21. M. Huang et al., Modelling the Steady State Deformation Stress Under Various Deformation Conditions Using a Single Irreversible Thermodynamics Based Formulation, / Acta Mater., 2009, 57(12), p 3431-438 CrossRef
    22. H.Y. Wu et al., Hot Compressive Flow Behavior of Inconel 600 Superalloy, / Appl. Mech. Mater., 2012, 117, p 1018-021
    23. E.P. Busso and F.A. McClintock, A Dislocation Mechanics-Based Crystallographic Model of a B2-Type Intermetallic Alloy, / Int. J. Plast., 1996, 12(1), p 1-8 CrossRef
    24. G. Ji et al., Research on the Dynamic Recrystallization Kinetics of Aermet100 Steel, / Mater. Sci. Eng. A, 2010, 527(9), p 2350-355 CrossRef
    25. A. Fernández et al., Dynamic Recrystallization Behavior Covering a Wide Austenite Grain Size Range in Nb and Nb-Ti Microalloyed Steels, / Mater. Sci. Eng. A, 2003, 361(1), p 367-76 CrossRef
    26. J. Hines and K. Vecchio, Recrystallization Kinetics Within Adiabatic Shear Bands, / Acta Mater., 1997, 45(2), p 635-49 CrossRef
    27. J.A. Hines, K.S. Vecchio, and S. Ahzi, A Model for Microstructure Evolution in Adiabatic Shear Bands, / Metall. Mater. Trans. A, 1998, 29(1), p 191-03 CrossRef
    28. S.N. Medyanik, W.K. Liu, and S. Li, On Criteria for Dynamic Adiabatic Shear Band Propagation, / J. Mech. Phys. Solids, 2007, 55(7), p 1439-461 CrossRef
    29. Y. Xu et al., Shear Localization and Recrystallization in Dynamic Deformation of 8090 Al-Li Alloy, / Mater. Sci. Eng. A, 2001, 299(1), p 287-95 CrossRef
    30. R. Raj, Development of a Processing Map for Use in Warm-Forming and Hot-Forming Processes, / Metall. Mater. Trans. A, 1981, 12(6), p 1089-097 CrossRef
    31. H. McQueen and C. Imbert, Dynamic Recrystallization: Plasticity Enhancing Structural Development, / J. Alloys Compd., 2004, 378(1), p 35-3 CrossRef
    32. N. Ravichandran and Y. Prasad, Influence of Oxygen on Dynamic Recrystallization During Hot Working of Polycrystalline Copper, / Mater. Sci. Eng. A, 1992, 156(2), p 195-04 CrossRef
    33. E. Poliak and J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, / Acta Mater., 1996, 44(1), p 127-36 CrossRef
    34. N. Ryan and H. McQueen, Flow Stress, Dynamic Restoration, Strain Hardening and Ductility in Hot Working of 316 Steel, / J. Mater. Process. Technol., 1990, 21(2), p 177-99 CrossRef
    35. H. McQueen, Development of Dynamic Recrystallization Theory, / Mater. Sci. Eng. A, 2004, 387, p 203-08 CrossRef
    36. E. Poliak and J. Jonas, Initiation of Dynamic Recrystallization in Constant Strain Rate Hot Deformation, / ISIJ Int., 2003, 43(5), p 684-91 CrossRef
  • 作者单位:Zhanwei Yuan (1)
    Fuguo Li (1)
    Huijuan Qiao (1)
    Guoliang Ji (2)

    1. State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, No.127 Youyi Xilu, Xi’an, 710072, People’s Republic of China
    2. School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, 454000, People’s Republic of China
  • ISSN:1544-1024
文摘
Based on the hot compression tests, the current investigation focuses on understanding, evaluating, and predicting the true stress-strain curves, the microstructural evolution of AerMet100 steel in a wide range of temperatures (1073-1473?K) and strain rates (0.01-50?s?). By using double-multivariate nonlinear regression, the constitutive equation was constructed at elevated temperatures, which, not only considers the influence of each independent factor on the flow stress but also the interaction among these independent factors. According to the Malas stability criterion, the processing maps were established based on the developed constitutive equation. Combined with the instability criterion m′?gt;?0 with s′?gt;?0, the optimum deformation conditions of AerMet100 were determined as temperature greater than 1330?K, and strain rate greater than 5.6?s?. From the observations of the microstructure after deformation, a lot of shear bands were found in the unstable domain of the processing maps, while the dynamic recovery and recrystallization can be observed in the stable domain. The formation of the adiabatic shear band from the synergy of temperature, strain rate, and deformation degree was the main reason for the deformation instability of AerMet100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700