Nitrogen Doping Position-Dependent Rectification of Spin-Polarized Current and Realization of Multifunction in Zigzag Graphene Nanoribbons with Asymmetric Edge Hydrogenation
详细信息    查看全文
  • 作者:Lihua Wang ; Zizhen Zhang ; Jianguo Zhao ; Bingjun Ding…
  • 关键词:Rectification ; spin filtering ; negative differential resistance ; doping ; zigzag graphene
  • 刊名:Journal of Electronic Materials
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:45
  • 期:2
  • 页码:1165-1174
  • 全文大小:2,388 KB
  • 参考文献:1.F. Prins, A. Barreiro, J.W. Ruitenberg, J.S. Seldenthuis, N. Aliaga-Alcalde, L.M.K. Vandersypen, and H.S.J. van der Zant, Nano Lett. 11, 4607 (2011).CrossRef
    2.A. Pramanik, S. Sarkar, and P. Sarkar, J. Phys. Chem. C 116, 18064 (2012).CrossRef
    3.J. Cai, P. Ruffieux, R. Jaafar, M. Bieri, T. Braun, S. Blankenburg, M. Muoth, A.P. Seitsonen, M. Saleh, X. Feng, K. Mullen, and R. Fasel, Nature 466, 470 (2010).CrossRef
    4.Y.P. An, K.D. Wang, Z.Q. Yang, Z.Y. Liu, G.R. Jia, Z.Y. Jiao, T.X. Wang, and G.L. Xu, Org. Electron. 17, 262 (2015).CrossRef
    5.J. Li, Z.H. Zhang, M. Qiu, C. Yuan, X.Q. Deng, Z.Q. Fan, G.P. Tang, and B. Liang, Carbon 80, 575 (2014).CrossRef
    6.L. Shen, M. Zeng, S. Li, M.B. Sullivan, and Y.P. Feng, Phys. Rev. B 86, 115419 (2012).CrossRef
    7.C.H. Yang, X.Q. Deng, G.P. Tang, and Z.Q. Fan, Solid State Commun. 203, 26 (2015).CrossRef
    8.M. Golor, S. Wessel, and M.J. Schmidt, Phys. Rev. Lett. 112, 046601 (2014).CrossRef
    9.K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov, Science 306, 666 (2004).CrossRef
    10.Y.P. An and Z.Q. Yang, Appl. Phys. Lett. 99, 192102 (2011).CrossRef
    11.D. Gunlycke and C.T. White, Phys. Rev. Lett. 106, 136806 (2011).CrossRef
    12.L.L. Cui, B.C. Yang, X.M. Li, C. Cao, and M.Q. Long, J. Appl. Phys. 116, 033701 (2014).CrossRef
    13.J. Bai, R. Cheng, F. Xiu, L. Liao, M. Wang, A. Shailos, K.L. Wang, Y. Huang, and X. Duan, Nat. Nanotechnol. 5, 655 (2010).CrossRef
    14.Y. Ni, K. Yao, H. Fu, G. Gao, S. Zhu, and S. Wang, Sci. Rep. 3, 1380 (2013).
    15.G.P. Tang, Z.H. Zhang, X.Q. Deng, Z.Q. Fan, and H.L. Zhu, Phys. Chem. Chem. Phys. 17, 638 (2015).CrossRef
    16.Y. An, X. Wei, and Z. Yang, Phys. Chem. Chem. Phys. 14, 15802 (2012).CrossRef
    17.M.G. Zeng, L. Shen, M. Zhou, C. Zhang, and Y.P. Feng, Phys. Rev. B 83, 115427 (2011).CrossRef
    18.N. Tombros, C. Jozsa, M. Popinciuc, H.T. Jonkman, and B.J. van Wees, Nature 448, 571 (2007).CrossRef
    19.W. Han and R.K. Kawakami, Phys. Rev. Lett. 107, 047207 (2011).CrossRef
    20.C. Xu, G. Luo, Q. Liu, J. Zheng, Z. Zhang, S. Nagase, Z. Gao, and J. Lu, Nanoscale 4, 3111 (2012).CrossRef
    21.J. Zeng, K.Q. Chen, J. He, X.J. Zhang, and C.Q. Sun, J. Phys. Chem. C 115, 25072 (2011).CrossRef
    22.J. Linder, M. Zareyan, and A. Sudbo, Phys. Rev. B 80, 014513 (2009).CrossRef
    23.W.Y. Kim and K.S. Kim, Nat. Nanotechnol. 3, 408 (2008).CrossRef
    24.F. Munoz-Rojas, J. Fernandez-Rossier, and J.J. Palacios, Phys. Rev. Lett. 102, 136810 (2009).CrossRef
    25.K. Kusakabe and M. Maruyama, Phys. Rev. B 67, 092406 (2003).CrossRef
    26.G. Lee and K. Cho, Phys. Rev. B 79, 165440 (2009).CrossRef
    27.E.J. Kan, Z.Y. Li, J.L. Yang, and J.G. Hou, J. Am. Chem. Soc. 130, 4224 (2008).CrossRef
    28.J. Kang, F.M. Wu, and J.B. Li, Appl. Phys. Lett. 98, 083109 (2011).CrossRef
    29.M. Choe, B.H. Lee, G. Jo, J. Park, W. Park, S. Lee, W.-K. Hong, M.-J. Seong, Y.H. Kahng, K. Lee, and T. Lee, Org. Electron. 11, 1864 (2010).CrossRef
    30.B. Xu, J. Yin, Y.D. Xia, X.G. Wan, K. Jiang, and Z.G. Liu, Appl. Phys. Lett. 96, 163102 (2010).CrossRef
    31.T. Wassmann, A.P. Seitsonen, A.M. Saitta, M. Lazzeri, and F. Mauri, Phys. Rev. Lett. 101, 096402 (2008).CrossRef
    32.X.Q. Deng, Z.H. Zhang, G.P. Tang, Z.Q. Fan, and C.H. Yang, Carbon 66, 646 (2014).CrossRef
    33.X.Q. Deng, Z.H. Zhang, C.H. Yang, H.L. Zhu, and B. Liang, Org. Electron. 14, 3240 (2013).CrossRef
    34.D.C. Wei, Y.Q. Liu, Y. Wang, H.L. Zhang, L.P. Huang, and G. Yu, Nano Lett. 9, 1752 (2009).CrossRef
    35.D. Zhang, M.Q. Long, X.J. Zhang, F.P. Ouyang, M.J. Li, and H. Xu, J. Appl. Phys. 117, 014311 (2015).CrossRef
    36.X. Deng, Z. Zhang, G. Tang, Z. Fan, H. Zhu, and C. Yang, Sci. Rep. 4, 4038 (2014).
    37.J. Liu, Z.H. Zhang, X.Q. Deng, Z.Q. Fan, and G.P. Tang, Org. Electron. 18, 135 (2015).CrossRef
    38.G.P. Tang, Z.H. Zhang, X.Q. Deng, Z.Q. Fan, Y.C. Zeng, and J.C. Zhou, Carbon 76, 348 (2014).CrossRef
    39.J. Zeng and K.Q. Chen, J. Mater. Chem. C 1, 4014 (2013).CrossRef
    40.N. Troullier and J.L. Martins, Phys. Rev. B 43, 1993 (1991).CrossRef
    41.D.M. Ceperley and B.J. Alder, Phys. Rev. Lett. 45, 566 (1980).CrossRef
    42.R. Landauer, Philos. Mag. 21, 863 (1970).CrossRef
    43.W.J. Liu, S.H. Cai, and X.Q. Deng, J. Electron. Mater. 44, 667 (2015).CrossRef
    44.Y. Cai, A. Zhang, Y.P. Feng, and C. Zhang, J. Chem. Phys. 135, 184703 (2011).CrossRef
  • 作者单位:Lihua Wang (1)
    Zizhen Zhang (1)
    Jianguo Zhao (1)
    Bingjun Ding (2)
    Yong Guo (1)

    1. School of Physics & Electronic Science and Institute of Applied Chemistry, Shanxi Datong University, Datong, 037009, Shanxi, China
    2. State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an, 710049, Shaanxi, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Optical and Electronic Materials
    Characterization and Evaluation Materials
    Electronics, Microelectronics and Instrumentation
    Solid State Physics and Spectroscopy
  • 出版者:Springer Boston
  • ISSN:1543-186X
文摘
The magnetic and spin transport properties of asymmetric edge-hydrogenated zigzag graphene nanoribbons (ZGNRs) selectively doped with nitrogen atoms were investigated using spin-polarized density functional theory and non-equilibrium Green’s function. Results show that the rectifying performance of spin-polarized current with a ratio higher than 105 can be modulated by changing the positions of the nitrogen dopant. Complete spin filtering (100%) and excellent negative differential resistance behaviors were observed in the ZGNR junctions. These doping position-dependent spin transport characteristics were further tested by shifting from the odd-numbered zigzag-shaped C chains (N Z) to the even-numbered N Z in ZGNRs. This study suggests that adopting a suitable nitrogen doping position could be an effective approach to significantly enhance the rectifying behavior of asymmetric edge-hydrogenated ZGNRs, which are promising materials for multifunctional spintronic devices. Keywords Rectification spin filtering negative differential resistance doping zigzag graphene

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700