Asymmetric Iridium-Catalyzed C–C Coupling of Chiral Diols via Site-Selective Redox-Triggered Carbonyl Addition
详细信息    查看全文
  • 关键词:Allylation ; Dehydrogenation ; Diastereoselectivity ; Enantioselectivity ; Green chemistry ; Iridium ; Polyketides ; Transfer hydrogenation
  • 刊名:Topics in Current Chemistry
  • 出版年:2016
  • 出版时间:2016
  • 年:2016
  • 卷:372
  • 期:1
  • 页码:85-101
  • 全文大小:851 KB
  • 参考文献:1.Hendrickson JB (1975) Systematic synthesis design. IV. Numerical codification of construction reactions. J Am Chem Soc 97:5784–5800CrossRef
    2.Burns NZ, Baran PS, Hoffmann RW (2009) Redox economy in organic synthesis. Angew Chem Int Ed 48:2854–2867CrossRef
    3.Trost BM (1983) Selectivity: a key to synthetic efficiency. Science 219:245–250CrossRef
    4.Newhouse T, Baran PS, Hoffmann RW (2009) The economies of synthesis. Chem Soc Rev 38:3010–3021CrossRef
    5.Hoffmann RW (2006) Protecting-group-free synthesis. Synthesis 3531–3541
    6.Young IS, Baran PS (2009) Protecting-group-free synthesis as an opportunity for invention. Nat Chem 1:193–205CrossRef
    7.Roulland E (2011) Protecting-group-free total syntheses: a challenging approach. Angew Chem Int Ed 50:1226–1227CrossRef
    8.Trost BM (1991) The atom economy – a search for synthetic efficiency. Science 254:1471–1477CrossRef
    9.Trost BM (1995) Atom economy – a challenge for organic synthesis: homogeneous catalysis leads the way. Angew Chem Int Ed Engl 34:259–281CrossRef
    10.Sheldon RA (1997) Catalysis and pollution prevention. Chem Ind 12–15
    11.Sheldon RA (2007) The E factor: fifteen years on. Green Chem 9:1273–1283CrossRef
    12.Sheldon RA (2012) Fundamentals of green chemistry: efficiency in reaction design. Chem Soc Rev 41:1437–1451CrossRef
    13.Butters M, Catterick D, Craig A, Curzons A, Dale D, Gillmore A, Green SP, Marziano I, Sherlock J-P, White W (2006) Critical assessment of pharmaceutical processes – a rationale for changing the synthetic route. Chem Rev 106:3002–3027CrossRef
    14.Carey JS, Laffan D, Thomson C, Williams MT (2006) Analysis of the reactions used for the preparation of drug candidate molecules. Org Biomol Chem 4:2337–2347CrossRef
    15.Busacca CA, Fandrick DR, Song JJ, Senanayake CH (2011) The growing impact of catalysis in the pharmaceutical industry. Adv Synth Catal 353:1825–1864CrossRef
    16.Dunn PJ (2012) The importance of green chemistry in process research and development. Chem Soc Rev 41:1452–1461CrossRef
    17.Han SB, Kim IS, Krische MJ (2009) Enantioselective iridium-catalyzed carbonyl allylation from the alcohol oxidation level via transfer hydrogenation: minimizing pre-activation for synthetic efficiency. Chem Commun 7278–7287
    18.Knowles WS (1983) Asymmetric hydrogenation. Acc Chem Res 16:106–112CrossRef
    19.Knowles WS (2002) Asymmetric hydrogenations (Nobel Lecture). Angew Chem Int Ed 41:1998–2007CrossRef
    20.Kawabata T, Muramatsu W, Nishio T, Shibata T, Schedel H (2007) A catalytic one-step process for the chemo- and regioselective acylation of monosaccharides. J Am Chem Soc 129:12890–12895CrossRef
    21.Muramatsu W, Kawabata T (2007) Regioselective acylation of 6-O-protected octyl β-d-glucopyranosides by DMAP catalysis. Tetrahedron Lett 48:5031–5033CrossRef
    22.Kawabata T, Muramatsu W, Nishio T, Shibata T, Uruno Y, Stragies R (2008) Regioselective acylation of octyl β-d-glucopyranoside by chiral 4-pyrrolidinopyridine analogues. Synthesis 747–753
    23.Ueda Y, Muramatsu W, Mishiro K, Furuta T, Kawabata T (2009) Functional group tolerance in organocatalytic regioselective acylation of carbohyrates. J Org Chem 74:8802–8805CrossRef
    24.Yoshida K, Furuta T, Kawabata T (2010) Perfectly regioselective acylation of a cardiac glycoside, digitoxin, via catalytic amplification of the intrinsic reactivity. Tetrahedron Lett 51:4830–4832CrossRef
    25.Muramatsu W, Mishiro K, Ueda Y, Furuta T, Kawabata T (2010) Perfectly regioselective and sequential protection of glucopyranosides. Eur J Org Chem 827–831
    26.Ueda Y, Mishiro K, Yoshida K, Furuta T, Kawabata T (2012) Regioselective diversification of a cardiac glycoside, lanatoside C, by organocatalysis. J Org Chem 77:7850–7857CrossRef
    27.Griswold KS, Miller SJ (2003) A peptide-based catalyst approach to regioselective functionalization of carbohydrates. Tetrahedron 59:8869–8875CrossRef
    28.Lewis CA, Sculimbrene BR, Xu Y, Miller SJ (2005) Desymmetrization of glycerol derivatives with peptide-based acylation catalysts. Org Lett 7:3021–3023CrossRef
    29.Lewis CA, Miller SJ (2006) Site-selective derivatization and remodeling of erythromycin A by using simple peptide-based chiral catalysts. Angew Chem Int Ed 45:5616–5619CrossRef
    30.Lewis CA, Merkel J, Miller SJ (2008) Catalytic site-selective synthesis and evaluation of a series of erythromycin analogs. Bioorg Med Chem Lett 18:6007–6011CrossRef
    31.Lewis CA, Longcore KE, Miller SJ, Wender PA (2009) An approach to the site-selective diversification of apoptolidin A with peptide-based catalysts. J Nat Prod 72:1864–1869CrossRef
    32.Fowler BS, Laemmerhold KM, Miller SJ (2012) Catalytic site-selective thiocarbonylations and deoxygenations of vancomycin reveal hydroxyl-dependent conformational effects. J Am Chem Soc 134:9755–9761CrossRef
    33.Allen CL, Miller SJ (2013) Chiral copper(II) complex-catalyzed reactions of partially protected carbohydrates. Org Lett 15:6178–6181CrossRef
    34.Pathak TP, Miller SJ (2013) Chemical tailoring of teicoplanin with site-selective reactions. J Am Chem Soc 135:8415–8422CrossRef
    35.Han S, Miller SJ (2013) Asymmetric catalysis at a distance: catalytic, site-selective phosphorylation of teicoplanin. J Am Chem Soc 135:12414–12421CrossRef
    36.Lee D, Taylor MS (2011) Borinic acid-catalyzed regioselective acylation of carbohydrate derivatives. J Am Chem Soc 133:3724–3727CrossRef
    37.Chan L, Taylor MS (2011) Regioselective alkylation of carbohydrate derivatives catalyzed by a diarylborinic acid derivative. Org Lett 13:3090–3093CrossRef
    38.Gouliaras C, Lee D, Chan L, Taylor MS (2011) Regioselective activation of glycosyl acceptors by a diarylborinic acid-derived catalyst. J Am Chem Soc 133:13926–13929CrossRef
    39.Lee D, Williamson CL, Chan L, Taylor MS (2012) Regioselective, borinic acid-catalyzed monoacylation, sulfonylation and alkylation of diols and carbohydrates: expansion of substrate scope and mechanistic studies. J Am Chem Soc 134:8260–8267CrossRef
    40.Lee D, Taylor MS (2013) Regioselective silylation of pyranosides using a boronic acid/Lewis base co-catalyst system. Org Biomol Chem 11:5409–5412CrossRef
    41.Beale TM, Taylor MS (2013) Synthesis of cardiac glycoside analogs by catalyst-controlled, regioselective glycosylation of digitoxin. Org Lett 15:1358–1361CrossRef
    42.Patman RL, Bower JF, Kim IS, Krische MJ (2008) Formation of C–C bonds via catalytic hydrogenation and transfer hydrogenation: vinylation, allylation, and enolate addition. Aldrichim Acta 41:95–104
    43.Bower JF, Kim IS, Patman RL, Krische MJ (2009) Catalytic carbonyl addition through transfer hydrogenation: a departure from preformed organometallic reagents. Angew Chem Int Ed 48:34–46CrossRef
    44.Bower JF, Krische MJ (2011) Formation of C–C bonds via iridium-catalyzed hydrogenation and transfer hydrogenation. Top Organomet Chem 34:107–138
    45.Hassan A, Krische MJ (2011) Unlocking hydrogenation for C–C bond formation: a brief overview of enantioselective methods. Org Process Res Dev 15:1236–1242CrossRef
    46.Moran J, Krische MJ (2012) Formation of C–C bonds via ruthenium-catalyzed transfer hydrogenation. Pure Appl Chem 84:1729–1739CrossRef
    47.Dechert-Schmitt A-MR, Schmitt DC, Gao X, Itoh T, Krische MJ (2014) Polyketide construction via hydrohydroxyalkylation and related alcohol C–H functionalizations: reinventing the chemistry of carbonyl addition. Nat Prod Rep 31:504–513CrossRef
    48.Ketcham JM, Shin I, Montgomery TP, Krische MJ (2014) Catalytic enantioselective C–H functionalization of alcohols by redox-triggered carbonyl addition: borrowing hydrogen, returning carbon. Angew Chem Int Ed 53:9142–9150CrossRef
    49.Kim IS, Ngai M-Y, Krische MJ (2008) Enantioselective iridium-catalyzed carbonyl allylation from the alcohol or aldehyde oxidation level using allyl acetate as an allyl metal surrogate. J Am Chem Soc 130:6340–6341CrossRef
    50.Kim IS, Ngai M-Y, Krische MJ (2008) Enantioselective iridium-catalyzed carbonyl allylation from the alcohol or aldehyde oxidation level via transfer hydrogenative coupling of allyl acetate: departure from chirally modified allyl metal reagents in carbonyl addition. J Am Chem Soc 130:14891–14899CrossRef
    51.Lu Y, Kim IS, Hassan A, Del Valle DJ, Krische MJ (2009) 1, n-Glycols as dialdehyde equivalents in iridium-catalyzed enantioselective carbonyl allylation and iterative two-directional assembly of 1,3-polyols. Angew Chem Int Ed 48:5018–5021CrossRef
    52.Hassan A, Lu Y, Krische MJ (2009) Elongation of 1,3-polyols via iterative catalyst-directed carbonyl allylation from the alcohol oxidation level. Org Lett 11:3112–3115CrossRef
    53.Schmitt DC, Dechert-Schmitt A-MR, Krische MJ (2012) Iridium-catalyzed allylation of chiral β-stereogenic alcohols: bypassing discrete formation of epimerizable aldehydes. Org Lett 14:6302–6305CrossRef
    54.Han SB, Hassan A, Kim IS, Krische MJ (2010) Total synthesis of (+)-roxaticin via C–C bond forming transfer hydrogenation: a departure from stoichiometric chiral reagents, auxiliaries, and premetalated nucleophiles in polyketide construction. J Am Chem Soc 132:15559–15561CrossRef
    55.Lu Y, Woo SK, Krische MJ (2011) Total synthesis of bryostatin 7 via C–C bond-forming hydrogenation. J Am Chem Soc 133:13876–13879CrossRef
    56.Gao X, Woo SK, Krische MJ (2013) Total synthesis of 6-deoxyerythronolide B via C–C bond-forming transfer hydrogenation. J Am Chem Soc 135:4223–4226CrossRef
    57.Del Valle DJ, Krische MJ (2013) Total synthesis of (+)-trienomycins A and F via C–C bond-forming hydrogenation and transfer hydrogenation. J Am Chem Soc 135:10986–10989CrossRef
    58.Waldeck AR, Krische MJ (2013) Total synthesis of cyanolide A in the absence of protecting groups, chiral auxiliaries, or premetalated carbon nucleophiles. Angew Chem Int Ed 52:4470–4473CrossRef
    59.Yang Z, Zhang B, Zhao G, Yang J, Xie X, She X (2011) Concise formal synthesis of (+)-neopeltolide. Org Lett 13:5916–5919CrossRef
    60.Feng Y, Jiang X, De Brabander JK (2012) Studies toward the unique pederin family member psymberin: full structure elucidation, two alternative total syntheses, and analogs. J Am Chem Soc 134:17083–17093CrossRef
    61.Wan S, Wu F, Rech JC, Green ME, Balachandran R, Horne WS, Day BW, Floreancig PE (2011) Total synthesis and biological evaluation of pederin, psymberin, and highly potent analogs. J Am Chem Soc 133:16668–16679CrossRef
    62.Kretschmer M, Dieckmann M, Li P, Rudolph S, Herkommer D, Troendlin J, Menche D (2013) Modular total synthesis of rhizopodin: a highly potent G-actin dimerizing macrolide. Chem Eur J 19:15993–16018CrossRef
    63.Sejberg JJP, Smith LD, Leatherbarrow RJ, Beavil AJ, Spivey AC (2013) Enantioselective synthesis of (+)-aspercyclide A. Tetrahedron Lett 54:4970–4972CrossRef
    64.Willwacher J, Fürstner A (2014) Catalysis-based total synthesis of putative mandelalide A. Angew Chem Int Ed 53:4217–4221CrossRef
    65.Suzuki T (2011) Organic synthesis involving iridium-catalyzed oxidation. Chem Rev 111:1825–1845CrossRef
    66.Lin Y, Zhu X, Zhou Y (1992) A convenient lactonization of diols to γ- and δ-lactones catalyzed by transition metal polyhydrides. J Organomet Chem 429:269–274CrossRef
    67.Suzuki T, Morita K, Tsuchida M, Hiroi K (2002) Mild and chemoselective synthesis of lactones from diols using a novel metal–ligand bifunctional catalyst. Org Lett 4:2361–2363CrossRef
    68.Suzuki T, Yamada T, Watanabe K, Katoh T (2005) Iridium-catalyzed oxidative lactonization and intramolecular Tishchenko reaction of δ-ketoaldehydes for the synthesis of isocoumarins and 3,4-dihydroisocoumarins. Bioorg Med Chem Lett 15:2583–2585CrossRef
    69.Suzuki T, Morita K, Ikemiyagi H, Watanabe K, Hiroi K, Katoh T (2006) Synthesis of the hemiacetal pheromone of the spined citrus bug biprorulus bibax utilizing an iridium catalyzed oxidative lactonization. Heterocycles 69:457–461CrossRef
    70.Kӧnigsmann M, Donati N, Stein D, Schӧnberg H, Harmer J, Sreekanth A, Grützmacher H (2007) Metalloenzyme-inspired catalysis: selective oxidation of primary alcohols with an iridium–aminyl-radical complex. Angew Chem Int Ed 46:3567–3570CrossRef
    71.Oger C, Brinkmann Y, Bouazzaoui S, Durand T, Galano J-M (2008) Stereocontrolled access to isoprostanes via a bicycle[3.3.0]octene framework. Org Lett 10:5087–5090CrossRef
    72.Arita S, Koike T, Kayaki Y, Ikariya T (2008) Aerobic oxidation of alcohols with bifunctional transition-metal catalysts bearing C–N chelate ligands. Chem Asian J 3:1479–1485CrossRef
    73.Kosaka M, Sekiguchi S, Naito J, Uemura M, Kuwahara S, Watanabe M, Harada N, Hiroi K (2005) Synthesis of enantiopure phthalides including 3-butylphthalide, a fragrance component of celery oil, and determination of their absolute configurations. Chirality 17:218–232CrossRef
    74.Suzuki T, Morita K, Matsuo Y, Hiroi K (2003) Catalytic asymmetric oxidative lactonizations of meso-diols using a chiral iridium complex. Tetrahedron Lett 44:2003–2006CrossRef
    75.Dechert-Schmitt A-MR, Schmitt DC, Krische MJ (2013) Protecting-group-free diastereoselective C–C coupling of 1,3-glycols and allyl acetate through site-selective primary alcohol dehydrogenation. Angew Chem Int Ed 52:3195–3198CrossRef
    76.Shin I, Wang G, Krische MJ (2014) Catalyst-directed diastereo- and site-selectivity in successive nucleophilic and electrophilic allylations of chiral 1,3-diols: protecting-group-free synthesis of substituted pyrans. Chem Eur J 20:13382–13389CrossRef
    77.Ramachandran PV (2002) Pinane-based versatile “allyl” boranes. Aldrichim Acta 35:23–35
    78.Denmark SE, Fu J (2003) Catalytic enantioselective addition of allylic organometallic reagents to aldehydes and ketones. Chem Rev 103:2763–2793CrossRef
    79.Yu C-M, Youn J, Jung H-K (2006) Regulation of stereoselectivity and reactivity in the inter- and intramolecular allylic transfer reactions. Bull Korean Chem Soc 27:463–472CrossRef
    80.Marek I, Sklute G (2007) Creation of quaternary stereocenters in carbonyl allylation reactions. Chem Commun 1683–1691
    81.Hall DG (2007) Lewis and Brønsted acid catalyzed allylboration of carbonyl compounds: from discovery to mechanism and applications. Synlett 1644–1655
    82.Lachance H, Hall DG (2008) Allyboration of carbonyl compounds. Org React 73:1–573
    83.Yus M, González-Gómez JC, Foubelo F (2011) Catalytic enantioselective allylation of carbonyl compounds and imines. Chem Rev 111:7774–7854CrossRef
    84.Denmark SE, Ghosh SK (2001) The first catalytic, diastereoselective, and enantioselective crossed-aldol reactions of aldehydes. Angew Chem Int Ed 40:4759–4762CrossRef
    85.Rychnovsky SD, Skalitzky DJ (1992) A practical preparation of α-alkoxylithium reagents: synthesis of syn or anti 1,3-diols. J Org Chem 57:4336–4339CrossRef
    86.Marriner GA, Garner SA, Jang H-Y, Krische MJ (2004) Metallo-aldehyde enolates via enal hydrogenation: catalytic cross aldolization with glyoxal partners as applied to the synthesis of 3,5-disubstituted pyridazines. J Org Chem 69:1380–1382CrossRef
    87.Fu F, Loh T-P (2009) An asymmetric synthesis of the polyol fragment of the polyene macrolide antibiotic RK-397. Tetrahedron Lett 50:3530–3533CrossRef
    88.Mengel A, Reiser O (1999) Around and beyond Cram’s rule. Chem Rev 99:1191–1223CrossRef
    89.Feng J, Garza VJ, Krische MJ (2014) Redox-triggered C–C Coupling of alcohols and vinyl epoxides: diastereo- and enantioselective formation of all-carbon quaternary centers via tert-(hydroxy)-prenylation. J Am Chem Soc 136:8911–8914CrossRef
    90.Wang G, Franke J, Ngo CQ, Krische MJ (2015) Diastereo- and enantioselective iridium catalyzed coupling of vinyl aziridines and alcohols: site-selective modification of unprotected diols and synthesis of substituted piperidines. J Am Chem Soc 137:7915–7920CrossRef
  • 作者单位:Inji Shin (19)
    Michael J. Krische (19)

    19. Department of Chemistry, University of Texas at Austin, 1 University Station – A5300, Austin, TX, 78712-1167, USA
  • 丛书名:Site-Selective Catalysis
  • ISBN:978-3-319-26333-5
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Organic Chemistry
    Inorganic Chemistry
    Theoretical and Computational Chemistry
    Medicinal Chemistry
    Biochemistry
    Organometallic Chemistry
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1436-5049
文摘
Cyclometalated π-allyliridium C,O-benzoate complexes modified by axially chiral chelating phosphine ligands display a pronounced kinetic preference for primary alcohol dehydrogenation, enabling highly site-selective redox-triggered carbonyl additions of chiral primary-secondary 1,3-diols with exceptional levels of catalyst-directed diastereoselectivity. Unlike conventional methods for carbonyl allylation, the present redox-triggered alcohol C–H functionalizations bypass the use of protecting groups, premetalated reagents, and discrete alcohol-to-aldehyde redox reactions.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700