Multi-peak accumulation and coarse modes observed from AERONET retrieved aerosol volume size distribution in Beijing
详细信息    查看全文
  • 作者:Ying Zhang ; Zhengqiang Li ; Yuhuan Zhang ; Yu Chen…
  • 刊名:Meteorology and Atmospheric Physics
  • 出版年:2016
  • 出版时间:August 2016
  • 年:2016
  • 卷:128
  • 期:4
  • 页码:537-544
  • 全文大小:671 KB
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Meteorology and Climatology
    Atmospheric Protection, Air Quality Control and Air Pollution
    Climate Change
    Mathematical Applications in Environmental Science
    Terrestrial Pollution
    Waste Water Technology, Water Pollution Control, Water Management and Aquatic Pollution
  • 出版者:Springer Wien
  • ISSN:1436-5065
  • 卷排序:128
文摘
We present characteristic peaks of atmospheric columnar aerosol volume size distribution retrieved from the AErosol RObotic NETwork (AERONET) ground-based Sun–sky radiometer observation, and their correlations with aerosol optical properties and meteorological conditions in Beijing over 2013. The results show that the aerosol volume particle size distribution (VPSD) can be decomposed into up to four characteristic peaks, located in accumulation and coarse modes, respectively. The mean center radii of extra peaks in accumulation and coarse modes locate around 0.28 (±0.09) to 0.38 (±0.11) and 1.25 (±0.56) to 1.47 (±0.30) μm, respectively. The multi-peak size distributions are found in different aerosol loading conditions, with the mean aerosol optical depth (440 nm) of 0.58, 0.49, 1.18 and 1.04 for 2-, 3-I/II and 4-peak VPSD types, while the correspondingly mean relative humidity values are 58, 54, 72 and 67 %, respectively. The results also show the significant increase (from 0.25 to 0.40 μm) of the mean extra peak median radius in the accumulation mode for the 3-peak-II cases, which agrees with aerosol hygroscopic growth related to relative humidity and/or cloud or fog processing.Responsible Editor: S.-W. Kim.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700