QTL mapping for bacterial wilt resistance in peanut (Arachis hypogaea L.)
详细信息    查看全文
  • 作者:Yongli Zhao ; Chong Zhang ; Hua Chen ; Mei Yuan ; Rick Nipper…
  • 关键词:QTL analysis ; Bacterial wilt ; SNP ; SSR ; RAD sequencing ; BSA ; Resistance gene homolog ; Peanut
  • 刊名:Molecular Breeding
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:36
  • 期:2
  • 全文大小:711 KB
  • 参考文献:Aarts MGM, Hekkert BL, Holub EB, Beynon JL, Stiekema WJ, Pereira A (1998) Identification of R-gene homeologous DNA fragments genetically linked to disease resistance loci in Arabidopsis thaliana. MPMI 11(4):251–258CrossRef PubMed
    Bai J, Pennill LA, Ning J, Lee SW, Ramalingam J, Webb CA, Zhao B, Sun Q, Nelson JC, Leach JE, Hulbert SH (2002) Diversity in nucleotide binding site-leucine rich repeat genes in cereals. Genome Res 12:1871–1884PubMedCentral CrossRef PubMed
    Baird NA, Etter PD, Atwood TS, Currey MC, Shiver AL, Lewis ZA, Selker EU, Cresko WA, Johnson EA (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3(10):e3376PubMedCentral CrossRef PubMed
    Becker A, Chao DY, Zhang X, Salt DE, Baxter I (2012) Bulk segregant analysis using single nucleotide polymorphism microarrays. PLoS ONE 6(1):e015993
    Brauer MJ, Christianson CM, Pai DA, Dunham MJ (2006) Mapping novel traits by array-assisted bulk segregant analysis in Saccharomyces cerevisiae. Genetics 173:1813–1816PubMedCentral CrossRef PubMed
    Broman KW, Wu H, Sen Ś, Churchill GA (2003) R/qtl: QTL mapping in experimental crosses. Bioinformatics 19:889–890CrossRef PubMed
    Buddenhagen IW (1986) Bacterial wilt revisited. In: Persley GJ (ed) Bacterial wilt disease in Asia and the South Pacific. ACIAR Proc 13:126–139
    Cao BH, Lei JJ, Wang Y, Chen GJ (2009) Inheritance and identification of SCAR marker linked to bacterial wilt-resistance in eggplant. Afr J Biotech 8(20):5201–5207
    Collard BCY, Jahufer MZZ, Brouwer JB, Pang ECK (2005) An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: the basic concepts. Euphytica 142:169–196CrossRef
    Darvasi A, Weinreb A, Minke V, Weller JI, Soller M (1993) Detecting marker-QTL linkage and estimating QTL gene effect and map location using a saturated genetic-map. Genetics 134(3):943–951PubMedCentral PubMed
    Davey JW, Blaxter ML (2011) RADSeq: next-generation population genetics. Brief Funct Genomics 9(5):416–423PubMedCentral
    Ding YF, Wang CT, Tang YY, Wang XZ, Wu Q, Hu DQ, Yu HT, Zhang JC, Cui FG, Song GS, Gao HY, Yu SL (2012) Isolation and analysis of differentially expressed genes from peanut in response to challenge with Ralstonia solanacearum. Electron J Biotechnol 15:5
    Godiard L, Sauviac L, Torii KU, Grenon O, Mangin B, Grimsley NH, Marco Y (2003) ERECTA, and LRR receptor-like kinase protein controlling development pleiotropically affects resistance to bacterial wilt. The Plant J 36:353–365CrossRef PubMed
    Hunger S, Gaspero GD, Mohring S, Bellin D, Schafer-Pregl R, Borchardt DC, Durel CE, Werber M, Weisshaar B, Salamini F, Schneider K (2003) Isolation and linkage analysis of expressed disease-resistance gene analogues of sugar beet (Beta vulgaris L.). Genome 46:70–82CrossRef PubMed
    Jiang HF, Chen BY, Ren XP, Liao BS, Lei Y, Fu DT, Ma CZ, Mace E, Crouch JH (2007) Identification of SSR markers linked to bacterial wilt resistance of peanut with RILs. Chinese J Oil Crop Sci 29(1):26–30
    Kang YJ, Kim KH, Shim S, Yoon MY, Sun S, Kim MY, Van K, Lee SH (2012) Genome-wide mapping of NBS-LRR genes and their association with disease resistance in soybean. BMC Plant Biol 12:139PubMedCentral CrossRef PubMed
    Kelman A, Sequeira L (1965) Root-to-root spread of Pseudomonas solancearum. Phytopathol 55:304–309
    Kosambi DD (1944) The estimation of map distances from recombination value. Ann Eugen 12:172–175CrossRef
    Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25PubMedCentral CrossRef PubMed
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) 1000 Genome project data processing subgroup: the sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079PubMedCentral CrossRef PubMed
    Liao BS (2014) Peanut Breeding. In: Mallikarjuna N, Varshney RK (eds) Genetics, genomics and breeding of peanut. CRC Press, Boca Raton, USA, pp 61–78
    Liao BS, Li WR, Sun DR (1986) A study on inheritance of resistance to bacterial wilt in groundnut. Oil Crops China 3:1–8
    Lu JW, Jiang HF, Ren XP, Zhang XJ, Liao BS (2010) Identification and molecular traits of ICRISAT mini core collection peanut species with resistance to bacterial wilt. Chinese Agric Sci Bull 26(10):47–51
    McClean APD (1930) The bacterial wilt disease of peanut (Arachis hypogaea L.). Sci Bull 87:14
    Michelmore RW (1995) Molecular approaches to manipulation of disease resistance genes. Annu Rev Phytopathol 33:393–427CrossRef PubMed
    Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832PubMedCentral CrossRef PubMed
    Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325PubMedCentral CrossRef PubMed
    Nagy ED, Chu Y, Guo YF, Khanal S, Tang SX, Li Y, Dong WB, Timper P, Taylor C, Ozias-Akins P et al (2010) Recombination is suppressed in an alien introgression in peanut harboring Rma, a dominant root-knot nematode resistance gene. Mol Breed 26:357–370CrossRef
    Pan Q, Liu YS, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D, Fluhr R (2000) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155:309–322PubMedCentral PubMed
    Pegadaraju V, Nipper R, Hulke B, Qi LL, Schultz Q (2013) De novo sequencing of sunflower genome for SNP discovery using RAD (Restriction site Associated DNA) approach. BMC Genom 14:556CrossRef
    Peng WF, Lu JW, Ren XP, Li H, Zhao XY (2011) Differential expression of genes related to bacterial wilt resistance in peanut (Arachis hypogaea L.). Hereditas 33(4):389–396CrossRef PubMed
    Qin HD, Feng SP, Charles Chen, Guo YF, Knapp S, Culbreath A, He GH, Wang ML, Zhang XY, Holbrook CC, Ozias-Akins P, Liang XQ, Guo BZ (2012) An integrated genetic linkage map of cultivated peanut (Arachis hypogaea L.) constructed from two RIL populations. Theor Appl Genet 124:653–664CrossRef PubMed
    Quarrie S, Lazic-Jancic V, Kovacevic D, Steed A, Pekic S (1999) Bulk segregant analysis with molecular markers and its use for improving drought resistance in maize. J Exp Bot 50:1299–1306CrossRef
    Ratnaparkhe MB, Wang XY, Li JP, Compton RO, Rainville LK, Lemke C, Kim C, Tang HB, Paterson AH (2011) Comparative analysis of peanut NBS-LRR gene clusters suggests evolutionary innovation among duplicated domains and erosion of gene microsynteny. New Phytol 192:164–178CrossRef PubMed
    Ravi K, Vadez V, Isobe S, Mir RR, Guo Y, Nigam SN, Gowda MVC, Radhakrishnan T, Bertioli DJ, Knapp SJ, Varshney RK (2011) Identification of several small main-effect QTLs and a large number of epistatic QTLs for drought tolerance related traits in groundnut (Arachis hypogaea L.). Theor Appl Genet 122:1119–1132PubMedCentral CrossRef PubMed
    Ren XP, Jiang HF, Liao BS (2008) Identification of molecular markers for resistance to bacterial wilt in peanut (Arachis hypogaea L.). J Plant Genet Res 9(2):163–167
    Schmit J (1978) Microscopic study of early stages of infection by Pseudomonas solanacearum E.F.S. on in vitro grown tomato seedlings. In: Proceedings of the 4th international conference on plant pathogenic bacteria, Angers, pp 841–856
    Seo YS, Rojas MR, Lee JY, Lee SW, Jeon JS, Ronald P, Lucas WJ, Gilbertson RL (2006) A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. Proc Natl Acad Sci USA 103:11856–11861PubMedCentral CrossRef PubMed
    Shan ZH, Duan NX, Jiang HF (1998) Inheritance of resistance in groundnuts. In: Prior P, Allen C, Elphinstone J (eds) Bacterial wilt disease: molecular and ecological aspects. Springer, Berlin, pp 300–305CrossRef
    Thoquet P, Olivier J, Sperisen C, Rogowsky P, Prior P, Anais G, Mangin B, Bazin B, Nazer R, Grimsley N (1996) Polygenic resistance of tomato plants to bacterial wilt in the French West Indies. Mol Plant Microbe Interact 9:837–842CrossRef
    Van Ooijen JW, Voorrips RE (2006) JoinMap version4.0: software for the calculation of genetic linkage maps. Wageningen: Plant Research International
    Varshney RK, Bertioli DJ, Moretzsohn MC, Vadez V, Krishramurthy L, Aruma R, Nigam SN, Moss BJ, Seetha K, Ravi K, He GH, Knapp SJ, Hoisington DA (2009) The first SSR-based genetic linkage map for cultivated groundnut (Arachis hypogaea L.). Theor Appl Genet 118(4):729–739CrossRef PubMed
    Varshney RK, Thudi M, Nayak SN, Gaur PM, Kashiwagi J, Krishnamurthy L, Jaganathan D, Koppolu J, Bohra A, Tripathi S, Rathore A, Jukanti AK, Jayalakshmi V, Vemula A, Singh SJ, Yasin M, Sheshshayee MS, Viswanatha KP (2014) Genetic dissection of drought tolerance in chickpea (Cicer arietinum L.). Theor Appl Genet 127:445–462PubMedCentral CrossRef PubMed
    Vasse J, Frey P, Trigalet A (1995) Microscopic studies of intercellular infection and protoxylem invasion of tomato roots by Pseudomonas solanacearum. Mol Plant Microbe Interact 8:241–251CrossRef
    Wang S, Basten CJ, Zeng ZB (2007) Windows QTL Cartographer 2.5. Department of Statistics, Raleigh, NC
    Wang H, Penmetsa RV, Yuan M, Gong LM, Zhao YL, Guo BZ, Farmer AD, Rosen BD, Gao JL, Isobe S, Bertioli DJ, Varshney RK, Cook DR, He GH (2012) Development and characterization of BAC-end sequence derived SSRs, and their incorporation into a new higher density genetic map for cultivated peanut (Arachis hypogaea L.). BMC Plant Biol 12:10PubMedCentral CrossRef PubMed
    Wenger JW, Schwartz K, Sherlock G (2012) Bulk segregant analysis by high-throughput sequencing reveals a novel xylose utilization gene from Saccharomyces cerevisiae. PLoS Genet 6(5):e1000942CrossRef
    Wicker E, Grassart L, Coranson-Beaudu R, Mian D, Guilbaud C, Fegan M, Prior P (2007) Ralstonia solanacearum strains from Martinique (French West Indies) exhibiting a new pathogenic potential. Appl Environ Microbiol 73(21):6790–6801PubMedCentral CrossRef PubMed
    Wurschum T (2012) Mapping QTL for agronomic traits in breeding populations. Theor Appl Genet 125:201–210CrossRef PubMed
    Yu SL, Wang CT, Yang QL, Zhang DX, Zhang XY, Cao YL, Liang XQ, Liao BS (2011) Peanut genetics and breeding in China. Shanghai Sci Tech Press, Shanghai, p 565
    Zeng Z (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468PubMedCentral PubMed
    Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18:821–829PubMedCentral CrossRef PubMed
    Zhang C, Lin JS, Zhuang WJ (2010) Study on molecular basis of resistance to Ralstonia solanacearum in peanut. Dissertation for master’s degree of Fujian Agriculture and forestry university 2010, pp 22–28
    Zhao YL, Prakash CS, He GH (2012) Characterization and compilation of polymorphic simple sequence repeat (SSR) markers of peanut from public database. BMC Res Notes 5:362PubMedCentral CrossRef PubMed
  • 作者单位:Yongli Zhao (1)
    Chong Zhang (2)
    Hua Chen (2)
    Mei Yuan (3)
    Rick Nipper (4)
    C. S. Prakash (1)
    Weijian Zhuang (2)
    Guohao He (1)

    1. Tuskegee University, Tuskegee, AL, 36088, USA
    2. Key Laboratory of Crop Molecular and Cell Biology, Fujian Agriculture and Forestry University, Fuzhou, China
    3. Shandong Peanut Research Institute, Qingdao, China
    4. Floragenex Inc., Portland, OR, 97239, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
  • 出版者:Springer Netherlands
  • ISSN:1572-9788
文摘
Bacterial wilt (BW) caused by Ralstonia solanacearum is a serious, global, disease of peanut (Arachis hypogaea L.), but it is especially destructive in China. Identification of DNA markers linked to the resistance to this disease will help peanut breeders efficiently develop resistant cultivars through molecular breeding. A F2 population, from a cross between disease-resistant and disease-susceptible cultivars, was used to detect quantitative trait loci (QTL) associated with the resistance to this disease in the cultivated peanut. Genome-wide SNPs were identified from restriction-site-associated DNA sequencing tags using next-generation DNA sequencing technology. SNPs linked to disease resistance were determined in two bulks of 30 resistant and 30 susceptible plants along with two parental plants using bulk segregant analysis. Polymorphic SSR and SNP markers were utilized for construction of a linkage map and for performing the QTL analysis, and a moderately dense linkage map was constructed in the F2 population. Two QTL (qBW-1 and qBW-2) detected for resistance to BW disease were located in the linkage groups LG1 and LG10 and account for 21 and 12 % of the bacterial wilt phenotypic variance. To confirm these QTL, the F8 RIL population with 223 plants was utilized for genotyping and phenotyping plants by year and location as compared to the F2 population. The QTL qBW-1 was consistent in the location of LG1 in the F8 population though the QTL qBW-2 could not be clarified due to fewer markers used and mapped in LG10. The QTL qBW-1, including four linked SNP markers and one SSR marker within 14.4-cM interval in the F8, was closely related to a disease resistance gene homolog and was considered as a candidate gene for resistance to BW. QTL identified in this study would be useful to conduct marker-assisted selection and may permit cloning of resistance genes. Our study shows that bulk segregant analysis of genome-wide SNPs is a useful approach to expedite the identification of genetic markers linked to disease resistance traits in the allotetraploidy species peanut. Keywords QTL analysis Bacterial wilt SNP SSR RAD sequencing BSA Resistance gene homolog Peanut

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700