Heat-based hyporheic flux calculations in heterogeneous salmon spawning gravels
详细信息    查看全文
  • 作者:Christian Birkel ; Chris Soulsby ; Dylan J. Irvine ; Iain Malcolm…
  • 关键词:Hyporheic zone ; Heat tracer ; Ground water ; surface water interaction ; VFLUX ; Numerical 2 ; D model
  • 刊名:Aquatic Sciences - Research Across Boundaries
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:78
  • 期:2
  • 页码:203-213
  • 全文大小:2,138 KB
  • 参考文献:Addy S, Soulsby C, Hartley AJ, Tetzlaff D (2011) Characterisation of and controls on channel reach morphology in deglaciated montane catchments in the Cairngorms, Scotland. Geomorphology 132:176–186CrossRef
    Anderson MP (2005) Heat as a ground water tracer. Ground Water 43(6):951–968CrossRef PubMed
    Bhaskar AS, Harvey JW, Henry EJ (2012) Resolving hyporheic and groundwater components of streambed water flux using heat as a tracer. Water Resour Res 48:W08524. doi:10.​1029/​2011WR011784
    Birkel C, Tetzlaff D, Dunn SM, Soulsby C (2010) Towards simple dynamic process conceptualization in rainfall-runoff models using multi-criteria calibration and tracers in temperate, upland catchments. Hydro Process 24:260–275
    Birkel C, Tetzlaff D, Dunn SM, Soulsby C (2011) Using time domain and geographic source tracers to conceptualize streamflow generation processes in lumped rainfall-runoff models. Water Resour Res 47:W02515. doi:10.​1029/​2010WR009547
    Briggs MA, Lautz LK, Gordon RP, McKenzie JM, Hare DK (2012) High resolution fiber-optic distributed temperature sensing of hyporheic flux patterns in varied space and time around beaver dams. Water Resour Res 48:W02527. doi:10.​1029/​2011WR011227
    Cardenas MB (2009) Stream-aquifer interactions and hyporheic exchange in gaining and losing sinuous streams. Water Resour Res 45:W06429. doi:10.​1029/​2008WR007651
    Cardenas MB, Wilson JL (2007) Effects of current-bed form induced fluid flow on the thermal regime of sediments. Water Resour Res 43:W08431. doi:10.​1029/​2006WR005343
    Cardenas MB, Zlotnik VA (2003) Three-dimensional model of modern channel bend deposits. Water Resour Res 39:1141. doi:10.​1029/​2002WR001383
    Cardenas MB, Wilson JL, Zlotnik VA (2004) Impact of heterogeneity, bedforms, and stream curvature on subchannel hyporheic exchange. Water Resour Res 40:W08307. doi:10.​1029/​2004WR003008
    Conant B (2004) Delineating and quantifying ground water discharge zones using streambed temperatures. Ground Water 42(2):243–257CrossRef PubMed
    Cranswick RH, Cook PG, Shanafield M, Lamontagne S (2014) The vertical variability of hyporheic fluxes inferred from riverbed temperature data. Water Resour Res 50:3994–4010. doi:10.​1002/​2013WR014410 CrossRef
    Curry RA, Gehrels J, Noakes DLG, Swainson R (1994) Effects of river flow fluctuations on groundwater discharge through brook trout, Salvelinus fontinalis, spawning and incubation habitats. Hydrobiologia 277(2):121–134. doi:10.​1007/​BF00016759 CrossRef
    Cuthbert MO, Mackay R (2013) Impacts of nonuniform flow on estimates of vertical streambed flux. Water Resour Res. doi:10.​1029/​2011WR011587
    Deutsch CV, Journel AG (1998) GSLIB: Geostatistical Software Library and User’s Guide, 2nd edn. Oxford University Press, New York
    Dick J, Tetzlaff D, Soulsby C (2015) Landscape influence on small-scale water temperature variations in a moorland catchment. Hydrol Process. doi:10.​1002/​hyp.​10423
    Geist DR, Arntzen EV, Murray CJ, McGrath KE, Bott Y-J, Hanrahan TP (2008) Influence of river level on temperature and hydraulic gradients in chum and fall Chinook salmon spawning areas downstream of Bonneville Dam, Columbia River. North Am J Fish Manag 27:30–41CrossRef
    Genereux DP, Leahy S, Mitasova H, Kennedy CD, Corbett DR (2008) Spatial and temporal variability of streambed hydraulic conductivity in West Bear Creek, North Carolina, USA. J Hydrol 358:332–353CrossRef
    Gomez-Velez JD, Krause S, Wilson JL (2014) Effect of low-permeability layers on spatial patterns of hyporheic exchange and groundwater upwelling. Water Resour Res 50:5196–5215. doi:10.​1002/​2013WR015054 CrossRef
    Gordon RP, Lautz LK, Briggs MA, McKenzie JM (2012) Automated calculation of vertical pore-water flux from field temperature time series using the VFLUX method and computer program. J Hydrol. doi:10.​1016/​j.​jhydrol.​2011.​11.​053
    Hatch CE, Fisher AT, Revenaugh JS, Constantz J, Ruehl C (2006) Quantifying surface water–groundwater interactions using time series analysis of streambed thermal records: method development. Water Resour Res 42(10):W10410
    Irvine DJ, Brunner P, Hendricks Franssen H-J, Simmons CT (2012) Heterogeneous or homogeneous? Implications of simplifying heterogeneous streambeds in models of losing streams. J Hydrol 424–425:16–23CrossRef
    Irvine DJ, Cranswick RH, Simmons CT, Shanafield MA, Lautz LK (2015) The effect of streambed heterogeneity on groundwater-surface water exchange fluxes inferred from temperature time series. Water Resour Res. doi:10.​1002/​2014WR015769
    Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater-surface water interactions: a review. Hydrol Earth Syst Sci 10:873–887CrossRef
    Käser DH, Binley A, Heathwaite AL, Krause S (2009) Spatio-temporal variations of hyporheic flow in a riffle-step-pool sequence. Hydrol Process 23:2138–2149CrossRef
    Keery J, Binley A, Crook N, Smith JWN (2007) Temporal and spatial variability of groundwater–surface water fluxes: development and application of an analytical method using temperature time series. J Hydrol 336(1–2):1–16CrossRef
    Lautz LK (2010) Impacts of nonideal field conditions on vertical water velocity estimates from streambed temperature time series. Water Resour Res 46:W01509. doi:10.​1029/​2009WR007917
    Lautz LK, Kranes NT, Siegel DI (2010) Heat tracing of heterogeneous hyporheic exchange adjacent to in-stream geomorphic features. Hydrol Process 24(21):3074–3086CrossRef
    Leek R, Wu JQ, Wang L, Hanrahan TP, Barber ME, Qiu H (2009) Heterogeneous characteristics of streambed saturated hydraulic conductivity of the Touchet River, south eastern Washington, USA. Hydrol Process 23:1236–1246CrossRef
    Leman VN (1993) Spawning sites of chum salmon, Oncorhynchus keta: microhydrological regime and viability of progeny in redds (Kamchatka River basin). J Ichthyol 33:104–117
    Malcolm IA, Soulsby C, Youngson AF (2002) Thermal regimes in the hyporheic zone of two contrasting salmon spawning streams; hydrological and ecological implications. Fish Manage Ecol 9:1–10CrossRef
    Malcolm IA, Soulsby C, Youngson AF, Hannah DM, McLaren IS, Thorne A (2004) Hydrological influences on hyporheic water quality: implications for salmonid survival. Hydrol Process 18:1521–1542CrossRef
    Malcolm IA, Soulsby C, Youngson AF, Hannah DM (2005) Catchment scale controls on groundwater—surface water interactions in the hyporheic zone: implications for salmon embryo survival. Rivers Res Appl 21:977–989CrossRef
    Malcolm IA, Youngson AF, Greig S, Soulsby C (2008) Hyporheic influences on spawning success. In: Sear D, DeVries P (eds) Salmon spawning habitat in rivers: physical controls, biological responses and approaches to remediation. American Fisheries Society, Symposium 65. Bethesda, Maryland, pp 225–248
    Malcolm IA, Youngson AF, Soulsby C, Imholt C, Fryer RJ (2011) Is interstitial velocity a good predictor of salmonid embryo survival? Trans Am Fish Soc 140(4):898–904CrossRef
    Malcolm IA, Gibbins CN, Soulsby C, Tetzlaff D (2012) The influence of hydrology and hydraulics on salmonids between spawning and emergence: implications for the management of flows in regulated rivers. Fish Manage Ecol. doi:10.​1111/​j.​1365-2400.​2011.​00836.​x
    McCallum AM, Andersen MS, Rau GC, Acworth RI (2012) A 1-D analytical method for estimating surface water–groundwater interactions and effective thermal diffusivity using temperature time series. Water Resour Res 48:W11532. doi:10.​1029/​2012WR012007
    Moir HJ, Soulsby C, Youngson AF (2002) Hydraulic and sedimentary controls on the availability and use of Atlantic salmon (Salmo salar) spawning habitat in the River Dee system, northeast Scotland. Geomorphology 45:291–308CrossRef
    Moir HJ, Gibbins CN, Soulsby C, Webb J (2004) Linking channel geomorphic characteristics to spatial patterns of spawning activity and discharge use by Atlantic salmon (Salmo salar L.) in two upland Scottish streams. Geomorphology 60:21–35CrossRef
    Rau GC, Andersen MS, Acworth RI (2012) Experimental investigation of the thermal time-series method for surface water-groundwater interactions. Water Resour Res 48:W03530. doi:10.​1029/​2011WR011560
    Roshan H, Rau GC, Andersen MS, Acworth RI (2012) Use of heat as tracer to quantify vertical streambed flow in a two-dimensional flow field. Water Resour Res 48:W10508. doi:10.​1029/​2012WR011918
    Selker JS, Thévenaz T, Huwald H, Mallet A, Luxemburg W, van de Giesen N, Stejskal M, Zeman J, Westhoff M, Parlange MB (2006) Distributed fiber-optic temperature sensing for hydrologic systems. Water Resour Res 42:W12202. doi:10.​1029/​2006WR005326
    Shanafield M, Pohll G, Susfalk R (2010) Use of heat-based vertical fluxes to approximate total flux in simple channels. Water Resour Res 46:W03508. doi:10.​1029/​2009WR007956
    Shanafield M, Hatch C, Pohll G (2011) Uncertainty in thermal time series analysis estimates of streambed water flux. Water Resour Res 47:W03504. doi:10.​1029/​2010WR009574
    Soulsby C, Malcolm IA, Youngson AF, Tetzlaff D, Gibbins CN, Hannah DM (2005) Groundwater—surface water interactions in upland Scottish rivers: hydrological, hydrochemical and ecological implications. Scott J Geol 41:39–49CrossRef
    Sowden TK, Power G (1985) Prediction of rainbow trout embryo survival in relation to groundwater seepage and particle size of spawning substrates. Trans Am Fish Soc 114:804–812CrossRef
    Swanson TE, Cardenas MB (2010) Diel heat transport within the hyporheic zone of a pool-riffle-pool sequence of a losing stream and evaluation of models for fluid flux estimation using heat. Limnol Oceanogr 55(4):1741–1754CrossRef
    Tetzlaff D, Soulsby C, Waldron S, Malcolm IA, Bacon PJ, Dunn SM, Lilly L (2007) Conceptualisation of runoff processes using GIS and tracers in a nested mesoscale catchment. Hydrol Process 21:1289–1307CrossRef
    Tetzlaff D, Birkel C, Dick J, Soulsby C (2014) Storage dynamics in hydropedological units control hillslope connectivity, runoff generation and the evolution of catchment transit time distributions. Water Resour Res 50:969–985. doi:10.​1002/​2013WR014147 CrossRef PubMed PubMedCentral
    Therrien R, McLaren RG, Sudicky EA, Panday SM (2006) HydroGeoSphere, Groundwater Simulations Group. University of Waterloo, Ontario
    Tonina D, Buffington JM (2007) Hyporheic exchange in gravel bed rivers with pool-riffle morphology: laboratory experiments and three-dimensional modeling. Water Resour Res 43:W01421. doi:10.​1029/​2005WR004328
    Wörman A, Riml J, Schmadel N, Neilson BT, Bottacin-Busolin A, Heavilin JE (2012) Spectral scaling of heat fluxes in streambed sediments. Geophys Res Lett 39:L23402CrossRef
    Young PC, Pedregal DJ, Tych W (1999) Dynamic harmonic regression. J Forecast 18(6):369–394CrossRef
    Youngson AF, Malcolm IA, Thorley JL, Bacon PJ, Soulsby C (2005) Long-residence groundwater effects on incubating salmonid eggs: low hyporheic oxygen impairs embryo development and causes mortality. Can J Fish Aquat Sci 61:2278–2287CrossRef
  • 作者单位:Christian Birkel (1) (4)
    Chris Soulsby (1)
    Dylan J. Irvine (3)
    Iain Malcolm (2)
    Laura K. Lautz (3)
    Doerthe Tetzlaff (1)

    1. Northern Rivers Institute, University of Aberdeen, Aberdeen, AB23 4UF, UK
    4. Department of Geography, University of Costa Rica, 2060, San José, Costa Rica
    3. Department of Earth Sciences, Syracuse University, Syracuse, USA
    2. Freshwater Laboratory, Marine Science Scotland, Pitlochry, UK
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Ecology
    Oceanography
    Life Sciences
  • 出版者:Birkh盲user Basel
  • ISSN:1420-9055
文摘
Groundwater-surface water interactions in rivers are a critically important factor for fish spawning, as streamwater downwelling or upwelling of low-oxygen groundwater can affect egg survival. Assessing such dynamics at the reach scale using distributed temperature measurements as a tracer proved reliable in determining flux rates and directions in the hyporheic zone in a number of studies. Here, we report heat-based vertical flux rates from a heterogeneous gravel-bed stream reach used by spawning Atlantic salmon in the Scottish Highlands. Results showed mostly small downwelling fluxes (~0.3 m d−1), which were largely independent of discharge. Contrasting, and at times unusual flux-depth profiles (e.g., increasing flux with depth) were detected, consistent with the heterogeneous streambed material causing diverse hyporheic flow paths. This was tested in a numerical 2-D model setup attempting to reproduce such behavior with variable random hydraulic conductivity (K) fields. The 2-D model clearly demonstrated that strong deviations from the expected decrease of fluxes with depth can be explained by high heterogeneity coupled with relatively low K fields. This showed that using simple 1-D heat-based flux estimates in combination with 2-D models is a useful approach to testing hypotheses about the influence of variable streambed materials on groundwater–surface water exchange in an ecological context.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700