Modeling lane formation in pedestrian counter flow and its effect on capacity
详细信息    查看全文
  • 作者:Jooyong Lee ; Taewan Kim ; Jin-Hyuk Chung ; Jinho Kim
  • 关键词:sustainable transportation ; social ; force model ; pedestrian flow ; walking ; cellular automata
  • 刊名:KSCE Journal of Civil Engineering
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:20
  • 期:3
  • 页码:1099-1108
  • 全文大小:909 KB
  • 参考文献:Benekohal, R. F. and Treiterer, J. (1988). “CARSIM: Car-following model for simulation of traffic in normal stop-and-go conditions.” Transportation Research Record, Issue 1194, pp. 99–111, (http://​onlinepubs.​trb.​org/​Onlinepubs/​trr/​1988/​1194/​1194-011.​pdf)
    Blue, V. J. and Adler, J. L. (1998). “Emergent fundamental pedestrian flows from cellular automata microsimulation.” Transportation Research Record, Issue 1644, pp. 29–36, DOI: 10.3141/1644-04.
    Blue, V. J. and Adler, J. L. (2001). “Cellular automata microsimulation for modeling bi-directional pedestrian walkways.” Transportation Research B, Vol. 35, No. 3, pp. 293–312, DOI: 10.1016/s0191-2615(99)00052-1.CrossRef
    Burstedde, C., Klauck, K., Schadschneider, A., and Zittarz, J., (2001). “Simulation of pedestrian dynamics using a two-dimensional cellular automaton.” Physica A, Vol. 295, Nos. 3-4 pp. 507–525, DOI: 10.1016/s0378-4371(01)00141-8.CrossRef MATH
    Chraibi, M., Seyfreid, A., and Schadschneider, A. (2010). “Generalized centrifugal-force model for pedestrian dynamics.” Physical Review E, Vol. 82, No. 4, 046111, DOI: 10.1103/physreve.82.046111.CrossRef
    Couzin, I. D. and Franks, N. R., (2003). “Self-organized lane formation and optimized traffic flow in army ants.” Proceedings of the Royal Society B: Biological Sciences, Vol. 270, No. 1511, pp. 139–146, DOI: 10.1098/rspb.2002.2210.CrossRef
    Delhommelle, J. (2005). “Should “lane formation” occur systematically in driven liquids and colloids?.” Physical Review E, Vol. 71, No. 1, pp. 16705, DOI: 10.1103/physreve.71.016705.CrossRef
    Flötteröd, G. and Lämmel, G. (2015). “Bidirectional pedestrian fundamental diagram.” Transportation Research Part B, Vol. 71, pp. 194–212, DOI: 10.1016/j.trb.2014.11.001.CrossRef
    Gazis, D. C., Herman, R., and Potts, R. B. (1959). “Car-following theory of steady-state traffic flow.” Operations Research, Vol. 7, No. 4, pp. 499–505, DOI: 10.1287/opre.7.4.499.MathSciNet CrossRef
    Greenshields, B. D. (1934). “A study on traffic capacity.” Highway Research Board, Proc., Vol. 1935.
    Guo, R. and Huang, H. (2012). “Formulation of pedestrian movement in microscopic models with continuous space representation.” Transportation Research C, Vol. 24, pp. 50–61, DOI: 10.1016/j.trc.2012.02.004.CrossRef
    Ha, E., Joo, Y., and Jun, C. (2011). “An empirical study on sustainable walkability indices for transit-oriented development by using the analytic network process approach.” International Journal of Urban Sciences, Vol. 15, No. 2, pp. 137–146, DOI: 10.1080/12265934. 2011.615977.CrossRef
    Helbing, D. and Molnár, P. (1995). “Social force model for pedestrian dynamics.” Physical Review E, Vol. 51, No. 5, pp. 4282–4286, DOI: 10.1103/physreve.51.4282.CrossRef
    Helbing, D., Buzna, L., Johansson, A., and Werner, T. (2005). “Selforganized pedestrian crowd dynamics: Experiments, simulations, and design solutions.” Transportation Science, Vol. 39, No. 1, pp. 1–24, DOI: 10.1287/trsc.1040.0108.CrossRef
    Helbing, D., Farkas, I., and Vicsek, T. (2000). “Simulating dynamical features of escape panic.” Nature, Vol. 407, No. 6803, pp. 487–490, DOI: 10.1038/35035023.CrossRef
    Henao, A., Piatkowski, D., Luckey, K., Nordback, K., Marshall, W., and Krizek, K. (2015). “Sustainable transportation infrastructure investment and mode share changes: A 20-year background of Boulder, Colorado.” Transport Policy, Vol. 37, pp. 64–71, DOI: 10.1016/j.tranpol. 2014.09.012.CrossRef
    Henderson, L. F. (1971). “The statistics of crowd fluids.” Nature, Vol. 229, No. 5284, pp. 381–383, DOI: 10.1038/229381a0.CrossRef
    Hoogendoorn, S. P. (2003). “Walker behaviour modelling by differential games.” In Interface and Transport Dynamics. Springer Berlin Heidelberg. pp. 275–294, DOI: 10.1007/978-3-662-07969-0_27.CrossRef
    Isobe, M., Adachi, T., and Nagatani, T. (2004). “Experiment and simulation of pedestrian counter flow.” Physics A, Vol. 336, No. 3, pp. 638–650, DOI: 10.1016/j.physa.2004.01.043.CrossRef
    Johansson, A. and Helbing, D. (2008). “Analysis of empirical trajectory data of pedestrians.” Handbook of Pedestrian and Evacuation Dynamics, Part I, pp. 203–214, DOI: 10.1007/978-3-642-04504-2_15.
    Kim, S. and Ulfarsson, G. F. (2008). “Curbing automobile use for sustainable transportation: analysis of mode choice on short home-based trips.” Transportation, Vol. 35, No. 6, pp. 723–737, DOI: 10.1007/s11116-008-9177-5.CrossRef
    Kim, S., Choi, J., and Kim, S. (2013). “Roadside walking environments and major factors affecting pedestrian level of service.” International Journal of Urban Sciences, Vol. 17, No. 3, pp. 304–315, DOI: 10.1080/12265934.2013.825422.CrossRef
    Kim, S., Choi, J., Kim, S., and Tay, R. (2014). “Personal space, evasive movement and pedestrian level of service.” Journal of Advanced Transportation, Vol. 48, No. 6, pp. 673–684, DOI: 10.1002/atr.1223.CrossRef
    Ko, M. S., Kim, T. W., and Sohn, K. M. (2013). “Calibrating a socialforce-based pedestrian walking model based on maximum likelihood estimation.” Transportation, Vol. 40, No. 1, pp. 91–107, DOI: 10.1007/s11116-012-9411-z.CrossRef
    Krauss, S., Wagner, P., and Gawron, C. (1997). “Metastable states in a microscopic model of traffic flow.” Physical Review E, Vol. 55, No. 5, pp. 5597–5602, DOI: 10.1103/physreve.55.5597.CrossRef
    Lam, W., Lee, J., and Cheung, C. (2002). “A study of the bi-directional pedestrian flow characteristics at Hong-Kong signalized crosswalk facilities.” Transportation, Vol. 29, No. 2, pp. 169–192,DOI: 10.1023/a:1014226416702.CrossRef
    Lee, H. S. and Park, E. Y. (2014). “Comparing the environment for elderly pedestrians among different-sized cities of Gyeonggi province in Korea.” International Journal of Urban Sciences, Vol. 18, No. 1, pp. 76–89, DOI: 10.1080/12265934.2013.863449.CrossRef
    Lighthill, M. J. and Whitham, J. B. (1955). “On kinematic waves II; A theory of traffic flow on long crowd roads.” Proceedings of the Royal Society A, Vol. 229, No. 1178, pp. 317–345, DOI: 10.1098/rspa.1955.0089.MathSciNet CrossRef MATH
    Ministry of Land, Transport and Maritime Affairs, Korea (2013). “Korean highway capacity manual.” pp. 618 (in Korean).
    Muramatsu, M., Irie, T., and Nagatani, T. (1999). “Jamming transition in pedestrian counter flow.” Physica A, Vol. 267, No. 3, pp. 487–498, DOI: 10.1016/s0378-4371(99)00018-7.CrossRef
    Nagel, K. and Schreckenberg, M. (1992). “A cellular automaton model for freeway traffic.” Journal of Physics I France, Vol. 2, No. 12, pp. 2221–2229, DOI: 10.1051/jp1:1992277.CrossRef
    Newell, G. F. (2002). “A simplified car-following theory: A lower order model.” Transportation Research B, Vol. 36, No. 3, pp. 195–205, DOI: 10.1016/s0191-2615(00)00044-8.MathSciNet CrossRef
    Nowak, S. and Schadschneider, A. (2012). “Quantitative analysis of pedestrian counterflow in a cellular automaton model.” Physical Review E, Vol. 85, No. 6, pp. 066128, DOI: 10.1103/physreve.85.066128.CrossRef
    Okazaki, S. (1979). “A study of pedestrian movement in architectural spaces, Part I: pedestrian movement by the application of magnetic models.” Trans. A. I. J., Vol. 283, pp. 111–119.
    Parisi, D. R., Gilman, M., and Moldovan, H. (2009). “A modification of the social force model can reproduce experimental data of pedestrian flows in normal conditions.” Physics A, Vol. 388, No. 17, pp. 3600–3608, DOI: 10.1016/j.physa.2009.05.027.CrossRef
    Piatkowski, D., Krizek, K., and Handy, S. (2015). “Accounting for the short term substitution effects of walking and cycling in sustainable transportation” Travel Behaviour and Society, Vol. 2, No. 1, pp. 32–41, DOI: 10.1016/j.tbs.2014.07.004.CrossRef
    Shuaib, M., Alia, O., and Zainuddin, Z. (2013). “Incorporating prediction factor into the investigation capability in the social force model: application on avoiding grouped pedestrians.” Applied Mathematics & Information Sciences, Vol. 7, No. 1, pp. 323–331, DOI: 10.12785/amis/070141.MathSciNet CrossRef
    Tajima, Y., Takimoto, K., and Nagatani. T. (2002). “Pattern formation and jamming transition in pedestrian counter flow.” Physica A, Vol. 313, No. 3, pp. 709–723, DOI: 10.1016/s0378-4371(02)00965-2.MathSciNet CrossRef MATH
    Takimoto, K., Tajima, Y., and Nagatani, T. (2002). “Effect of partition line on jamming transition in pedestrian counter flow.” Physica A, Vol. 308, No. 1, pp. 460–470, DOI: 10.1016/s0378-4371(02)00550-2.MathSciNet CrossRef MATH
    Zhang, J., Klingsch, W., Schadschneider, A., and Seyfried, A. (2012). “Ordering in bidirectional pedestrian flows and its influence on the fundamental diagram.” Journal of Statistical Mechanics, Vol. 2012, No. 2, pp. 02002, DOI: 10.1088/1742-5468/2012/02/p02002.CrossRef
  • 作者单位:Jooyong Lee (1)
    Taewan Kim (1)
    Jin-Hyuk Chung (2)
    Jinho Kim (3)

    1. Dept. of Urban Engineering, Chung-Ang University, Seoul, 06974, Korea
    2. Dept. of Urban Planning and Engineering, Yonsei University, Seoul, 03722, Korea
    3. Smart Station Research Team, Korea Railroad Research Institute, Uiwang, 16105, Korea
  • 刊物类别:Engineering
  • 刊物主题:Civil Engineering
    Industrial Pollution Prevention
    Automotive and Aerospace Engineering and Traffic
    Geotechnical Engineering
  • 出版者:Korean Society of Civil Engineers
  • ISSN:1976-3808
文摘
For the development of a sustainable transportation system, a modal shift from automobiles to walking or transit is encouraged. In order to design a more convenient and comfortable walking environment, a sound modeling of pedestrian flow is necessary. Most of the previously developed pedestrian flow models well described the macroscopic features of unidirectional pedestrian flow. However, in pedestrian counter-flow, interactions among conflicting pedestrians are so complicated and existing flow models fall short in explaining some features of pedestrian behaviors. A spontaneous lane formation, which helps to reduce conflicts and increase travel speeds, is a commonly observed feature of a crowded pedestrian flow. This paper develops a social-force based pedestrian model, which can explain the lane formation phenomenon. From the simulation results, it turns out that the ‘following effect’ and ‘evasive effect’ mainly contribute to the lane formation. Higher capacity and travel speed are obtained when pedestrians are more congregated.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700