A highly linear CMOS transconductance amplifier in 180?nm process technology
详细信息    查看全文
  • 作者:Sougata Kumar Kar (1) sougatakar@ee.iitkgp.ernet.in
    Siddhartha Sen (1) ssen@ee.iitkgp.ernet.in
  • 关键词:Transconductance amplifier – Linearization – Harmonic distortion – Noise
  • 刊名:Analog Integrated Circuits and Signal Processing
  • 出版年:2012
  • 出版时间:July 2012
  • 年:2012
  • 卷:72
  • 期:1
  • 页码:163-171
  • 全文大小:357.7 KB
  • 参考文献:1. Tsividis, Y., Czarnul, Z.,& Fang, S. C. (1986). MOS transconductors and integrators with high linearity. Electronic Letters, 22(5).
    2. Nedungadi, A., & Viswanathan, T. R. (1984). Design of linear CMOS transconductance elements. IEEE Transactions on Circuits and Systems, CAS-31(10), 891–894.
    3. Silva-Martinez, J., Stayert, M. S. J., & Sansen, W. M. C. (1991). A large-signal very low-distortion transconductor for high frequency continuous-time filters. IEEE Journal of Solid State Circuits, 26, 946–955.
    4. Lewinsky, A., & Silva-Martinez, J. (2004). OTA linearity enhancement technique for high frequency applications with IM3 below ?65 dB. IEEE Transactions on Circuits and Systems-II: Express Briefs, 51(10), 542–548.
    5. Lujan-Martinez, C., Carvajal, R. G., Galan, J., Torralba, A., Ramirez-Angulo, J., & Lopez-Martin, A. (2008). A tunable pseudo-differential OTA with ?78 dB THD consuming 1.25 mW. IEEE Transactions on Circuits and Systems-II: Express Briefs, 55(6), 527–531.
    6. Lujan-Martinez, C., Carvajal, R. G., Torralba, A., & Ramirez-Angulo, J. (2008). A ?72 dB @ 2 MHz IM3 CMOS tunable pseudo-differential transconductor. IEEE International Symposium on Circuits and Systems,ISCAS’08, pp. 73–76.
    7. Sinencio, E. S. Operational transconductance amplifiers(OTAs): A tutorial. Analog and Mixed Signal Center, TAMU.
    8. Razavi, B. (2005). Design of analog CMOS integrated circuits. New Delhi: Tata McGraw-Hill.
    9. El mourabit, A., Sbaa, M. H., Alaoui-Ismaili, Z., & Lahjomri, F. (2007). A CMOS transconductor with high linear range. IEEE International Conference on Electronics, Circuits and Systems,ICECS’07, pp. 1131–1134.
    10. Ouzounov, S., Roza, E., Hegt, H., v.d. Weide, G., & van Roermund, A. (2007). Design of MOS transconductors with low noise and low harmonic distortion for minimum current consumption. Integration, the VLSI journal, (40), 365–379.
    11. Gray, P. R., & Meyer, R. G. (1982). MOS operational amplifier design: A tutorial overview. IEEE Journal of Solid-State Circuits, SC-17(6), 969–982.
    12. Chen, J., Sanchez-Sinencio, E., & Silva-Martinez, J. (2006). Frequency dependent harmonic-distortion analysis of a linearized cross-coupled CMOS OTA and its application to OTA-C filters. IEEE Transactions on Circuits and Systems-I: Regular Papers, 53(3), 499–510.
    13. Voorman, H., & Veenstra, H. (2000). Tunable high-frequency Gm-C filters. IEEE Journal of Solid-State Circuits, 35(8), 1097–1108.
    14. Mohieldin, A. N., Sanchez-Sinencio, E., & Silva-Martinez, J. (2003). A fully balanced pseudo-differential OTA with common-mode feedforward and inherent common-mode feedback detector. IEEE Journal of Solid-State Circuits, 38(4), 663–668.
  • 作者单位:1. Department of Electrical Engineering, Indian Institute of Technology, Kharagpur, India
  • 刊物类别:Engineering
  • 刊物主题:Circuits and Systems
    Electronic and Computer Engineering
    Signal,Image and Speech Processing
  • 出版者:Springer Netherlands
  • ISSN:1573-1979
文摘
The present article describes the design and analysis of an operational transconductance amplifier (voltage to current converter) with wide linear input range. The proposed configuration combines the techniques of signal attenuation and source degeneration in order to reduce the odd order harmonic distortion significantly. The proposed circuit is compared with several circuit topologies based on MOS differential pairs with respect to their achievable linearity, input referred noise and power consumption. The linear transconductor is designed and simulated in 180 nm CMOS process technology with 1.8 V power supply. Simulation results show third order harmonic distortion (HD 3) of ?70 dB for 600 mVpp input signal. For 1% transconductance variation the linear range is about 1.2 Vpp. The input referred noise of the transconductor is 70 nV/?{\text Hz}70\,\hbox{nV}/\sqrt{\text {Hz}} at 10 MHz. The quiescent power consumption is only 450 μW.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700