Spontaneous postural sway predicts the strength of smooth vection
详细信息    查看全文
  • 作者:Stephen Palmisano (1)
    Deborah Apthorp (2)
    Takeharu Seno (3)
    Paul J. Stapley (4)
  • 关键词:Self ; motion ; Vection ; Postural sway ; Vision ; Optic flow
  • 刊名:Experimental Brain Research
  • 出版年:2014
  • 出版时间:April 2014
  • 年:2014
  • 卷:232
  • 期:4
  • 页码:1185-1191
  • 全文大小:341 KB
  • 参考文献:1. Apthorp, D., Stapley P, Palmisano S (2013) Individual variations in visual control of posture predict vection. Perception 42(ECVP abstract supplement):172
    2. Berthoz A, Lacour M, Soechting JF, Vidal PP (1979) The role of vision in the control of posture during linear motion. Prog Brain Res 50:197-09 CrossRef
    3. Howard IP (1982) Human visual orientation. Wiley, Chichester
    4. Hufschmidt A, Dichgans J, Mauritz KH, Hufschmidt M (1980) Some methods and parameters of body sway quantification and their neurological application. Archiv Psychiatrie Nervenkrankh 228:135-50 CrossRef
    5. Kelly JW, Riecke B, Loomis JM, Beall AC (2008) Visual control of posture in real and virtual environments. Percept Psychophys 70:158-65. doi:10.3758/PP.70.1.158 CrossRef
    6. Kim J, Palmisano S (2008) Effects of active and passive viewpoint jitter on vection in depth. Brain Res Bull 77:335-42. doi:10.1016/j.brainresbull.2008.09.011 CrossRef
    7. Kim J, Palmisano S, Bonato F (2012) Simulated angular head oscillation enhances vection in depth. Perception 41:402-14. doi:10.1068/p6919 CrossRef
    8. Koslucher FC, Haaland EJ, Stoffregen TA (2014) Body load and the postural precursors of motion sickness. Gait Posture 39:606-10 CrossRef
    9. Kuno S, Kawakita T, Kawakami O, Miyake Y, Watanabe S (1999) Postural adjustment response to depth direction moving patterns produced by virtual reality graphics. Jap J Physiol 49:417-24 CrossRef
    10. Lacour M, Barthelemy J, Borel L, Magnan J, Xerri C, Chays A, Ouaknine M (1997) Sensory strategies in human postural control before and after unilateral vestibular neurotomy. Exp Brain Res 115:300-10 CrossRef
    11. Lee DN, Lishman JR (1975) Visual proprioceptive control of stance. J Hum Mov Stud 1:87-5
    12. Lestienne F, Soechting J, Berthoz A (1977) Postural readjustments Induced by linear motion of visual scenes. Exp Brain Res 28:363-84
    13. Lishman JR, Lee DN (1973) The autonomy of visual kinaesthesis. Perception 2:287-94 CrossRef
    14. Nakamura S (2010) Additional oscillation can facilitate visually induced self-motion perception: the effect of its coherence and amplitude gradient. Perception 39:320-29. doi:10.1068/p6534 CrossRef
    15. Nakamura S (2013) Effects of additional visual oscillation on vection under voluntary eye movement conditions—retinal image motion is critical in vection facilitation. Perception 42:529-36. doi:10.1068/p7486 CrossRef
    16. Palmisano S, Bonato F, Bubka A, Folder J (2007) Vertical Display Oscillation Increases Vection in Depth and Simulator Sickness. Aviat Space Environ Med 78:951-56. doi:10.3357/ASEM.2079.2007 CrossRef
    17. Palmisano S, Allison RS, Pekin F (2008) Accelerating self-motion displays produce more compelling vection in depth. Perception 37:22-3. doi:10.1068/p5806 CrossRef
    18. Palmisano S, Pinniger GJ, Ash A, Steele JR (2009) Effects of simulated viewpoint jitter on visually induced postural sway. Perception 38:442-53. doi:10.1068/p6159 CrossRef
    19. Palmisano S, Allison RS, Kim J, Bonato F (2011) Simulated Viewpoint jitter shakes sensory conflict accounts of self-motion perception. Seeing Perceiving 24:173-00. doi:10.1163/187847511X570817 CrossRef
    20. Palmisano S, Kim J, Freeman TCA (2012) Horizontal fixation point oscillation and simulated viewpoint oscillation both increase vection in depth. J Vis 12(12:15):1-4. doi:10.1167/12.12.15
    21. Previc FH, Mullen TJ (1990) A comparison of the latencies of visually induced postural change and self-motion perception. J Vestib Res 1:317-23
    22. Smart LJ, Stoffregen TA, Bardy BG (2002) Visually induced motion sickness predicted by postural instability. Hum Factors 44:451-65. doi:10.1518/0018720024497745 CrossRef
    23. Stapley P, Beretta MV, Toffola ED, Schieppati M (2006) Neck muscle fatigue and postural control in patients with whiplash injury. Clin Neurophysiol 117:610-22. doi:10.1016/j.clinph.2005.11.007 CrossRef
    24. Stoffregen TA (1985) Flow structure versus retinal location in the optical control of stance. J Exp Psychol Hum 11:554-65 CrossRef
    25. Stoffregen TA, Smart LJ (1998) Postural instability precedes motion sickness. Brain Res Bull 47:437-48 CrossRef
    26. Stoffregen TA, Hettinger LJ, Haas MW, Roe M, Smart LJ (2000) Postural instability and motion sickness in a fixed-base flight simulator. Hum Factors 42:458-69 CrossRef
    27. Stoffregen TA, Yoshida K, Villard S, Scibora L, Bardy BG (2010) Stance width influences postural stability and motion sickness. Ecological Psychology 22:169-91 doi:10.1080/10407413.2010.496645 CrossRef
    28. Tanahashi S, Ujike H, Kozawa R, Ukai K (2007) Effects of visually simulated roll motion on vection and postural stabilization. J Neuroeng Rehabil 4:1-1. doi:10.1186/1743-0003-4-39 CrossRef
    29. Thurrell AEI, Bronstein AM (2002) Vection increases the magnitude and accuracy of visually evoked postural responses. Exp Brain Res 147:558-60. doi:10.1007/s00221-002-1296-1 CrossRef
    30. Van Asten WNJC, Gielen CCAM, van der Gon JJD (1988) Postural adjustments induced by simulated motion of differently structured environments. Exp Brain Res 73:371-83 CrossRef
    31. Van Parys JAP, Njiokiktjien CJ (1976) Romberg’s sign expressed in a quotient. Agressologie 17B:95-00
    32. Villard SJ, Flanagan MB, Albanese GM, Stoffregen TA (2008) Postural instability and motion sickness in a virtual moving room. Hum Factors 50:332-45 CrossRef
  • 作者单位:Stephen Palmisano (1)
    Deborah Apthorp (2)
    Takeharu Seno (3)
    Paul J. Stapley (4)

    1. School of Psychology, University of Wollongong, Wollongong, NSW, 2522, Australia
    2. Research School of Psychology, Australian National University, Canberra, ACT, Australia
    3. Institute for Advanced Study, Kyushu University, Fukuoka, Japan
    4. School of Medicine, University of Wollongong, Wollongong, NSW, Australia
  • ISSN:1432-1106
文摘
This study asked whether individual differences in the influence of vision on postural stability could be used to predict the strength of subsequently induced visual illusions of self-motion (vection). In the experiment, we first measured spontaneous postural sway while subjects stood erect for 60?s with their eyes both open and both closed. We then showed our subjects two types of self-motion display: radially expanding optic flow (simulating constant velocity forwards self-motion) and vertically oscillating radially expanding optic flow (simulating constant velocity forwards self-motion combined with vertical head oscillation). As expected, subjects swayed more with their eyes closed (compared to open) and experienced more compelling illusions of self-motion with vertically oscillating (as opposed to smooth) radial flow. The extent to which participants relied on vision for postural stability—measured as the ratio of sway with eyes closed compared to that with eyes open—was found to predict vection strength. However, this was only the case for displays representing smooth self-motion. It seems that for oscillating displays, other factors, such as visual–vestibular interactions, may be more important.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700