Combined effects of auditory and visual cues on the perception of vection
详细信息    查看全文
  • 作者:Behrang Keshavarz (1)
    Lawrence J. Hettinger (2)
    Daniel Vena (1)
    Jennifer L. Campos (1) (3)
  • 关键词:Illusory self ; motion ; Vection ; Multisensory integration ; Motion sickness ; Postural sway ; Virtual reality
  • 刊名:Experimental Brain Research
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:232
  • 期:3
  • 页码:827-836
  • 全文大小:510 KB
  • 参考文献:1. Bonato F, Bubka A, Palmisano S, Phillip D, Moreno G (2008) Vection change exacerbates simulator sickness in virtual environments. Presence-Teleop Virtual 17:283-92 CrossRef
    2. Butler JS, Campos JL, Bülthoff HH, Smith ST (2011) The role of stereo vision in visual-vestibular integration. Seeing Perceiving 24:453-70. doi:10.1163/187847511X588070 CrossRef
    3. Campos JL, Bülthoff HH (2012) Multimodal Integration during self-motion in virtual reality. In: Murray MM, Wallace MT (Eds.) The neural bases of multisensory processes. CRC Press, Boca Raton, chapter 30
    4. Dichgans J, Brandt T (1973) Optokinetic motion sickness and pseudo-Coriolis effects induced by moving visual stimuli. Acta Otolaryngol 76:339-48 CrossRef
    5. Dichgans J, Brandt T (1978) Visual-vestibular interaction: effects on self-motion perception and postural control. In: Anstis SM, Held R, Leibowitz HW, Teuber HL (eds) Handbook of sensory physiology: perception, vol VIII. Springer Verlag, Berlin, pp 756-95
    6. Dodge R (1923) Thresholds of rotation. J Exp Psychol 6:107-37 CrossRef
    7. Durgin FH, Pelah A, Fox LF, Lewis J, Kane R, Walley KA (2005) Self-motion perception during locomotor recalibration: more than meets the eye. J Exp Psychol Hum Percept Perform 31:398-19 CrossRef
    8. Fischer M, Kornmüller A (1930) Optokinetisch ausgel?ste Bewegungswahrnehmungen und optokinetischer Nystagmus. J Psychol Neurol 41:273-08
    9. Flanagan MB, May JG, Dobie TG (2004) The role of vection, eye movements and postural instability in the etiology of motion sickness. J Vestib Res 14:335-46
    10. Fushiki H, Kobayashi K, Asai M, Watanabe Y (2005) Influence of visually induced self-motion on postural stability. Acta Otolaryngol 125:60-4 CrossRef
    11. Gibson JJ (1961) Ecological optics. Vision Res 1:253-62 CrossRef
    12. Hettinger LJ (2002) Illusory self-motion in virtual environments. In: Stanney KM (ed) Handbook of virtual environments: design, implementation, and applications. Lawrence Erlbaum Associates, Mahwah, pp 471-91
    13. Hettinger LJ, Riccio GE (1992) Visually induced motion sickness in virtual environments. Presence-Teleop Virtual 1:306-10
    14. Hettinger LJ, Berbaum KS, Kennedy RS, Dunlap WP, Nolan MD (1990) Vection and simulator sickness. Mil Psychol 2:171-81. doi:10.1207/s15327876mp0203_4 CrossRef
    15. Ji JTT, So RHY, Cheung RTF (2009) Isolating the effects of vection and optokinetic nystagmus on optokinetic rotation-induced motion sickness. Hum Factors 51:739-51. doi:10.1177/0018720809349708 CrossRef
    16. Kapralos B, Zikovitz D, Jenkin M, Harris LR (2004) Auditory cues in the perception of self-motion for linear translation. Technical Report. CS-2004-04, York University, Toronto
    17. Kennedy RS, Lane NE, Lilienthal MG, Berbaum KS, Hettinger LJ (1992) Profile analysis of simulator sickness symptoms: application to virtual environment systems. Presence-Teleop Virt 1:295-01
    18. Kennedy RS, Lane NE, Berbaum KS, Lilienthal MG (1993) Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int J Aviat Psychol 3:203-20. doi:10.1207/s15327108ijap0303_3 CrossRef
    19. Kennedy RS, Hettinger LJ, Harm DL, Ordy JM, Dunlap WP (1996) Psychophysical scaling of circular vection (CV) produced by optokinetic (OKN) motion: individual differences and effects of practice. J Vestib Res 6:331-41 CrossRef
    20. Keshavarz B, Hecht H (2011) Validating an efficient method to quantify motion sickness. Hum Factors 53:415-26. doi:10.1177/0018720811403736 CrossRef
    21. Keshavarz B, Hecht H (2012a) Stereoscopic viewing enhances visually induced motion sickness but sound does not. Presence-Teleop Virt 21:213-28 CrossRef
    22. Keshavarz B, Hecht H (2012b) Visually induced motion sickness and presence in videogames: the role of sound. Proc Hum Fact Ergon Soc Annu Meet 56:1763-767. doi:10.1177/1071181312561354 CrossRef
    23. Lackner JR (1977) Induction of illusory self-rotation and nystagmus by a rotating sound-field. Aviat Space Environ Med 48:129-31
    24. Larsson P, V?stfj?ll D, Kleiner M (2004) Perception of self-motion and presence in auditory virtual environments. Proceedings of the seventh annual workshop of presence, Valencia, Spain, pp. 252-58
    25. Lawson BD (2005) Exploiting the illusion of self-motion (vection) to achieve a feeling of “virtual acceleration-in an immersive display. In: Stephanidis C (ed) Proceedings of the 11th international conference on human–computer interaction, Las Vegas, pp 1-0
    26. Lestienne F, Soechting J, Berthoz A (1977) Postural readjustments induced by linear morion of visual scenes. Exp Brain Res 28:363-84
    27. Lewald J (2013) Exceptional ability of blind humans to hear sound motion: implications for the emergence of auditory space. Neuropsychologia 51:181-86. doi:10.1016/j.neuropsychologia.2012.11.017 CrossRef
    28. Mach E (1875) Grundlinien der Lehre von den Bewegungsempfindungen. Enegelmann, Leipzig
    29. Martens WL (2004) The importance of perceived self-motion in experiencing convincing virtual acoustic rendering. J Acoust Soc Am 115:2514 CrossRef
    30. Merhi O, Faugloire E, Flanagan MB, Stoffregen TA (2007) Motion sickness, console video games, and head-mounted displays. Hum Factors 49:920-34. doi:10.1518/001872007X230262 CrossRef
    31. Meyer GF, Wong LT, Tomson E, Perfect P, White MD (2012) Objective fidelity evaluation in multisensory virtual environments: auditory cue fidelity in flight simulation. PLoS ONE 7(9):e44381. doi:10.1371/journal.pone.0044381 CrossRef
    32. Miki K, Kida T, Tanaka E, Nagata O, Kakigi R (2009) The impact of visual movement on auditory cortical responses: a magnetoencephalographic study. Exp Brain Res 194:597-04. doi:10.1007/s00221-009-1735-3 CrossRef
    33. Mohler BJ, Thompson WB, Creem-Regehr SH, Pick HL, Warren WH (2007) Visual flow influences gait transition speed and preferred walking speed. Exp Brain Res 181:221-28 CrossRef
    34. Nichols SC, Haldane C, Wilson JR (2000) Measurement of presence and its consequences in virtual environments. Int J Hum–Comput St 52:471-91 doi:10.1006/ijhc.1999.0343
    35. Palmisano SA, Allison RS, Pekin F (2008) Accelerating self-motion displays produce more compelling vection in depth. Perception 37:22-3. doi:10.1068/p5806 CrossRef
    36. Palmisano SA, Pinninger GJ, Ash A, Steele JR (2009) Effects of simulated viewpoint jitter on visually induced postural sway. Perception 38:442-53 CrossRef
    37. Riecke BE, Schulte-Pelkum J, Avraamides MN, Bülthoff HH (2004) Enhancing the visually induced self-motion illusion (vection) under natural viewing conditions in virtual reality. Proceedings of 7th annual presence workshop, pp 125-32
    38. Riecke BE, Schulte-Pelkum J, Caniard F, Bülthoff HH (2005) Influence of auditory cues on the visually-induced self-motion illusion (circular vection) in virtual reality. Proceedings of 8th annual presence workshop. ACM Press, New York, pp 49-7
    39. Riecke BE, Feuereissen D, Rieser JJ (2008) Auditory self-motion illusions (“circular vection- can be facilitated by vibrations and the potential for actual motion. In: Creem-Regehr SH, Myszkowski K (eds) Proceedings of the 5th symposium on applied perception in graphics and visualization (APGV 08). ACM Press, New York, pp 147-54 CrossRef
    40. Riecke BE, V?ljam?e A, Schulte-Pelkum J (2009) Moving sounds enhance the visually-induced self-motion illusion (circular vection) in virtual reality. ACM Trans Appl Percept 6:2
    41. Sakamoto S, Osada Y, Suzuki Y, Gyoba J (2004) The effects of linearly moving sound images on self-motion perception. Acoust Sci Tech 25:100-02 CrossRef
    42. Seno T, Hasuo E, Ito H, Nakajima Y (2012) Perceptually plausible sounds facilitate visually induced self-motion perception (vection). Perception 41:577-93. doi:10.1068/p7184 CrossRef
    43. Smart LJ, Stoffregen TA, Bardy BG (2002) Visually induced motion sickness predicted by postural instability. Hum Factors 44:451-65. doi:10.1518/0018720024497745 CrossRef
    44. Spence C (2007) Audiovisual multisensory integration. Acoust Sci Tech 28:61-0 CrossRef
    45. Stoffregen TA, Hettinger LJ, Haas MW, Roe MM, Smart LJ (2000) Postural instability and motion sickness in a fixed-base flight simulator. Hum Factors 42:458-69. doi:10.1518/001872000779698097 CrossRef
    46. Sun H-J, Lee AJ, Campos JL, Chan GSW, Zhang DH (2003) Multisensory integration in speed estimation during self-motion. Cyberpsychol Behav 6:509-18 CrossRef
    47. Tanahashi A, Ujike H, Kozawa R, Ukai K (2007) Effects of visually simulated roll motion on vection and postural stabilization. J Neuroeng Rehabil 4:39. doi:10.1186/1743-0003-4-39 CrossRef
    48. Thurrell AEI, Bronstein AM (2002) Vection increases the magnitude and accuracy of visually evoked postural responses. Exp Brain Res 147:558-60 CrossRef
    49. V?ljam?e A (2009) Auditorily-induced illusory self-motion: a review. Brain Res Rev 61:240-55 CrossRef
    50. Wang Y, Kenyon RV, Keshner EA (2010) Identifying the control of physically and perceptually evoked sway responses with coincident visual scene velocities and tilt of the base of support. Exp Brain Res 201:663-72. doi:10.1007/s00221-009-2082-0 CrossRef
    51. Webb NA, Griffin MJ (2002) Optokinetic stimuli: motion sickness, visual acuity, and eye movements. Aviat Space Environ Med 73:351-58
    52. Wolsley CJ, Buckwell D, Sakellari V, Bronstein AM (1996) The effect of eye/head deviation and visual conflict on visually evoked postural response. Brain Res Bull 40:437-42 CrossRef
  • 作者单位:Behrang Keshavarz (1)
    Lawrence J. Hettinger (2)
    Daniel Vena (1)
    Jennifer L. Campos (1) (3)

    1. Department of Research, Toronto Rehabilitation Institute, Technology Team/iDAPT, 550 University Avenue, Toronto, ON, M5G 2A2, Canada
    2. Center for Behavioral Sciences, Liberty Mutual Research Institute for Safety, Hopkinton, MA, USA
    3. Department of Psychology, University of Toronto, Toronto, ON, Canada
  • ISSN:1432-1106
文摘
Vection is the illusion of self-motion in the absence of real physical movement. The aim of the present study was to analyze how multisensory inputs (visual and auditory) contribute to the perception of vection. Participants were seated in a stationary position in front of a large, curved projection display and were exposed to a virtual scene that constantly rotated around the yaw-axis, simulating a 360° rotation. The virtual scene contained either only visual, only auditory, or a combination of visual and auditory cues. Additionally, simulated rotation speed (90°/s vs. 60°/s) and the number of sound sources (1 vs. 3) were varied for all three stimulus conditions. All participants were exposed to every condition in a randomized order. Data specific to vection latency, vection strength, the severity of motion sickness (MS), and postural steadiness were collected. Results revealed reduced vection onset latencies and increased vection strength when auditory cues were added to the visual stimuli, whereas MS and postural steadiness were not affected by the presence of auditory cues. Half of the participants reported experiencing auditorily induced vection, although the sensation was rather weak and less robust than visually induced vection. Results demonstrate that the combination of visual and auditory cues can enhance the sensation of vection.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700