iMSAT: a novel approach to the development of microsatellite loci using barcoded Illumina libraries
详细信息    查看全文
  • 作者:Jeremy C Andersen (5)
    Nicholas J Mills (5)

    5. Department of Environmental Science Policy and Management
    ; University of California Berkeley ; Wellman Hall ; Berkeley ; USA
  • 刊名:BMC Genomics
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:15
  • 期:1
  • 全文大小:840 KB
  • 参考文献:1. Mardis, ER (2008) The impact of next-generation sequencing technology on genetics. Trends Genet 24: pp. 133-141 CrossRef
    2. Metzker, ML (2010) Applications of next-generation sequencing; sequencing technologies - the next generation. Nat Rev Genet 11: pp. 31-46 CrossRef
    3. Shendure, J, Ji, H (2008) Next-generation DNA sequencing. Nat Biotechnol 26: pp. 1135-1145 CrossRef
    4. Ekblom, R, Galindo, J (2011) Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 107: pp. 1-15 CrossRef
    5. Gardner, MG, Fitch, AJ, Bertozzi, T, Lowe, AJ (2011) Rise of the machines - recommendations for ecologists when using next generation sequencing for microsatellite development. Mol Ecol Resour 11: pp. 1093-1101 CrossRef
    6. Keller, D, Jung, E, Holderegger, R (2012) Development of microsatellite markers for the wetland grasshopper Stethophyma grossum. Conserv Genet Resour 4: pp. 507-509 CrossRef
    7. Bai, X, Zhang, W, Orantes, L, Jun, T-H, Mittapalli, O, Mian, MAR, Michel, AP (2010) Combining Next-Generation Sequencing strategies for rapid molecular resource development from an invasive aphid species, Aphis glycines. PLoS One 5: pp. e11370 CrossRef
    8. Cerna, K, Straka, J (2012) Identification of 37 microsatellite loci for Anthophora plumipes (Hymenoptera: Apidae) using next generation sequencing and their utility in related species. Eur J Entomol 109: pp. 155-160 CrossRef
    9. L贸pez-Uribe, MM, Santiago, CK, Bogdanowicz, SM, Danforth, BN (2013) Discovery and characterization of microsatellites for the solitary bee Colletes inaequalis using Sanger and 454 pyrosequencing. Apidologie 44: pp. 163-172 CrossRef
    10. Castoe, TA, Poole, AW, Koning, APJ, Jones, KL, Tomback, DF, Oyler-McCance, SJ, Fike, J, Lance, SL, Streicher, JW, Smith, EN, Pollock, DD (2012) Rapid microsatellite identification from Illumina paired-end genomic sequencing in two birds and a snake. PLoS ONE 7: pp. e30953 CrossRef
    11. Castoe, TA, Poole, AW, Gu, W, de Koning, APJ, Daza, M, Smith, EN, Pollock, DD (2010) Rapid identification of thousands of microsatellite loci for the copperhead snake (Agkistrodon contortrix) from modest amounts of 454 shotgun genome sequence. Mol Ecol Resour 10: pp. 341-347 CrossRef
    12. Faircloth, BC (2008) MSATCOMMANDER: detection of microsatellite repeat arrays and automated, locus-specific primer design. Mol Ecol Resour 8: pp. 92-94 CrossRef
    13. Dereeper, A, Argout, X, Billot, C, Rami, J-F, Ruiz, M (2007) SAT, a flexible and optimized Web application for SSR marker development. BMC Bioinformatics 8: pp. 465 CrossRef
    14. Edgar, RC, Myers, EW (2005) PILER: identification and classification of genomic repeats. Bioinformatics 21: pp. I152-I158 CrossRef
    15. Jewell, E, Robinson, A, Savage, D, Erwin, T, Love, CG, Lim, GAC, Li, X, Batley, J, Spangenberg, GC, Edwards, D (2006) SSRPrimer and SSR Taxonomy Tree: Biome SSR discovery. Nucleic Acids Res 34: pp. W656-W659 CrossRef
    16. Kofler, R, Schloetterer, C, Lelley, T (2007) SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics 23: pp. 1683-1685 CrossRef
    17. Kraemer, L, Beszteri, B, Gaebler-Schwarz, S, Held, C, Leese, F, Mayer, C, Poehlmann, K, Frickenhaus, S (2009) STAMP: Extensions to the STADEN sequence analysis package for high throughput interactive microsatellite marker design. BMC Bioinformatics 10: pp. 465 CrossRef
    18. Li, Q, Wan, J-M (2005) SSRHunter: Development of a local searching software for SSR sites. Yichuan 27: pp. 808-810
    19. Thurston, MI, Field, D (2005) Msatfinder: detection and characterisation of microsatellites.
    20. Mayer C: / Phobos 3.3.11. http://www.rub.de/spezzoo/cm/cm_phobos.htm%20003E. In.; 2006鈥?010
    21. Du, L, Li, Y, Zhang, X, Yue, B (2013) MSDB: A user-friendly program for reporting distribution and building databases of microsatellites from genome sequences. J Hered 104: pp. 154-157 CrossRef
    22. Miller, MP, Knaus, BJ, Mullins, TD, Haig, SM (2013) SSR_pipeline: A bioinformatic infrastructure for identifying microsatellites from paired-end Illumina high-throughput DNA sequencing data. J Hered 104: pp. 881-885 CrossRef
    23. Lim, KG, Kwoh, CK, Hsu, LY, Wirawan, A (2013) Review of tandem repeat search tools: a systematic approach to evaluating algorithmic performance. Brief Bioinform 14: pp. 67-81 CrossRef
    24. Jun, TH, Mian, MAR, Freewalt, K, Mittapalli, O, Michel, AP (2012) Development of genic-SSRs markers from soybean aphid sequences generated by high-throughput sequencing of cDNA library. J Appl Entomol 136: pp. 614-625 CrossRef
    25. van den Bosch, R, Frazer, BD, Davis, CS, Messenger, PS, Hom, R (1970) Trioxys pallidus: an effective new walnut aphid parasite from Iran. Calif Agric 24: pp. 8-10
    26. van den Bosch, R, Hom, R, Matteson, P, Frazer, BD, Messenger, PS, Davis, CS (1979) Biological control of the walnut aphid in California: impact of the parasite. Trioxys pallidus Hilgardia 47: pp. 1-13 CrossRef
    27. van den Bosch, R, Schilinger, EI, Hagen, KS (1962) Initial field observations in California on Trioxys pallidus (Haliday) a recently introduced parasite of the walnut aphid. J Econ Entomol 55: pp. 857-862
    28. Zerbino, DR, Birney, E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18: pp. 821-829 CrossRef
    29. Silva, PI, Martins, AM, Gouvea, EG, Pessoa-Filho, M, Ferreira, ME (2013) Develoment and validation of microsatellite markers for Brachiaria ruziziensis obtained by partial genome assembly of Illumina single-end reads. BMC Genomics 14: pp. 9
    30. Zalapa, JE, Cuevas, H, Zhu, H, Steffan, S, Senalik, D, Zeldin, E, McCown, B, Harbut, R, Simon, P (2012) Using Next-Generation Sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99: pp. 193-208 CrossRef
    31. Andr茅s, JA, Bogdanowicz, SM Isolating microsatellite loci: looking back, looking ahead. In: Orgogozo, V, Rockman, MV eds. (2011) Molecular Methods for Evolutionary Genetics. Springer, New York, pp. 211-232
    32. McEwen, JR, Vamosi, JC, Rogers, SM (2011) Rapid isolation and cross-amplification of microsatellite markers in Plectritis congesta (Valerianaceae) with 454 sequencing. Am J Bot 98: pp. e369-e371 CrossRef
    33. Li, H, Handsaker, B, Wysoker, A, Fennell, T, Ruan, J, Homer, N, Marth, G, Abecasis, G, Durbin, R (2009) The Sequence alignment/map (SAM) format and SAMtools. Bioinformatics 25: pp. 2078-2079 CrossRef
    34. Li, H, Durbin, R (2009) Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics 25: pp. 1754-1760 CrossRef
    35. Hoffman, JI, Nichols, HJ (2011) A novel approach for mining polymorphic microsatellite markers in silico. PLoS One 6: pp. e23283 CrossRef
    36. Behura, SK, Severson, DW (2012) Genome-wide comparative analysis of simple sequence coding repeats among 25 insect species. Gene 504: pp. 226-232 CrossRef
    37. Li, Y-C, Korol, AB, Fahima, T, Beiles, A, Nevo, E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11: pp. 2453-2465 CrossRef
    38. Pannebakker, BA, Niehuis, O, Hedley, A, Gadau, J, Shuker, DM (2010) The distribution of microsatellites in the Nasonia parasitoid wasp genome. Insect Mol Biol 19: pp. 91-98 CrossRef
    39. Gordon, A (2009) FASTX-toolkit - FASTA/FASTQ preprocessing tools.
    40. McKenna, A, Hanna, M, Banks, E, Sivachenko, A, Cibulskis, K, Kernytsky, A, Garimella, K, Altshuler, D, Gabriel, S, Daly, M, DePristo, MA (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20: pp. 1297-1303 CrossRef
    41. DePristo, MA, Banks, E, Poplin, R, Garimella, KV, Maguire, JR, Hartl, C, Philippakis, AA, del Angel, G, Rivas, MA, Hanna, M, McKeena, A, Fennell, TJ, Kernystsky, AM, Sivachenko, AY, Cibulskis, K, Gabriel, SB, Altshuler, D, Daly, MJ (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43: pp. 491-498 CrossRef
    42. Nielsen, R, Paul, JS, Albrechtsen, A, Song, YS (2011) Genotype and SNP calling from next-generation sequencing data. Nat Rev Genet 12: pp. 443-451 CrossRef
    43. DeWoody, JA, Nason, JD, Hipkins, VD (2006) Mitigating scoring errors in microsatellite data from wild populations. Mol Ecol Notes 6: pp. 951-957 CrossRef
    44. Rozen, S, Skaletsky, HJ Primer3 on the WWW for general users and for biologist programmers. In: Krawetz, S, Misener, S eds. (2000) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ, pp. 365-386
    45. Geneious v 5.6.2 created by Biomatters Available from http://www.geneious.com
    46. Raymond, M, Rousset, F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Heredity 86: pp. 248-249
    47. Rousset, F (2008) Genepop鈥?07: a complete reimplementation of the Genepop software for Windows and Linux. Mol Ecol Resour 8: pp. 103-106 CrossRef
  • 刊物主题:Life Sciences, general; Microarrays; Proteomics; Animal Genetics and Genomics; Microbial Genetics and Genomics; Plant Genetics & Genomics;
  • 出版者:BioMed Central
  • ISSN:1471-2164
文摘
Background Illumina sequencing with its high number of reads and low per base pair cost is an attractive technology for development of molecular resources for non-model organisms. While many software packages have been developed to identify short tandem repeats (STRs) from next-generation sequencing data, these methods do not inform the investigator as to whether or not candidate loci are polymorphic in their target populations. Results We provide a python program iMSAT that uses the polymorphism data obtained from mapping individual Illumina sequence reads onto a reference genome to identify polymorphic STRs. Using this approach, we identified 9,119 candidate polymorphic STRs for use with the parasitoid wasp Trioxys pallidus and 2,378 candidate polymorphic STRs for use with the aphid Chromaphis juglandicola. For both organisms we selected 20 candidate tri-nucleotide STRs for validation. Using fluorescent-labeled oligonucleotide primers, we genotyped 91 female T. pallidus collected in nine localities and 46 female C. juglandicola collected in 4 localities and found 15 of the examined markers to be polymorphic for T. pallidus and 12 of the examined markers to be polymorphic for C. juglandicola. Conclusions We present a novel approach that uses standard Illumina barcoding primers and a single Illumina HiSeq run to target polymorphic STR fragments to develop and test STR markers. We validate this approach using the parasitoid wasp T. pallidus and its aphid host C. juglandicola. This approach, which would also be compatible with 454 Sequencing, allowed us to quickly identify markers with known variability. Accordingly, our method constitutes a significant improvement over existing STR identification software packages.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700