Fuzzy spatial relation ontology driven detection of complex geospatial features in a web service environment
详细信息    查看全文
  • 作者:Lianlian He (1) (2)
    Peng Yue (3) (4)
    Liangcun Jiang (3)
    Mingda Zhang (3)

    1. School of Mathematics and Statistics
    ; Wuhan University ; Wuhan ; China
    2. Department of Mathematics
    ; Hubei University of Education ; Hubei ; China
    3. State Key Laboratory of Information Engineering in Surveying
    ; Mapping and Remote Sensing ; Wuhan University ; Wuhan ; China
    4. Key Laboratory of Poyang Lake Wetland and Watershed Research
    ; Ministry of Education ; Jiangxi Normal University ; Nanchang ; 330022 ; China
  • 关键词:Fuzzy logic ; Fuzzy spatial relation ontology ; Geoprocessing workflow ; Remote sensing imagery ; Complex geospatial feature ; Geospatial service
  • 刊名:Earth Science Informatics
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:8
  • 期:1
  • 页码:63-76
  • 全文大小:2,947 KB
  • 参考文献:1. Arpinar, IB, Sheth, A, Ramakrishnan, C, Usery, EL, Azami, M, Kwan, M (2006) Geospatial ontology development and semantic analytics. Trans GIS 10: pp. 551-575 CrossRef
    2. Arvor, D, Durieux, L, Andr茅s, S, Laporte, MA (2013) Advances in geographic object-based image analysis with ontologies: a review of main contributions and limitations from a remote sensing perspective. ISPRS J Photogramm Remote Sens 82: pp. 125-137 CrossRef
    3. Awrangjeb, M, Ravanbakhsh, M, Fraser, CS (2010) Automatic detection of residential buildings using LIDAR data and multispectral imagery. ISPRS J Photogramm Remote Sens 65: pp. 457-467 CrossRef
    4. Baltsavias, EP (2004) Object extraction and revision by image analysis using existing geodata and knowledge: current status and steps towards operational systems. ISPRS J Photogramm Remote Sens 58: pp. 129-151 CrossRef
    5. Blaschke, T, Hay, GJ, Kelly, M, Lang, S, Hofmann, P, Addink, E, Feitosa, RQ, Meer, F, Werff, H, Coillie, F, Tiede, D (2014) Geographic object-based image analysis鈥攖owards a new paradigm. ISPRS J Photogramm Remote Sens 87: pp. 180-191 CrossRef
    6. Bloch, I (2005) Fuzzy spatial relationships for image processing and interpretation: a review. Image Vis Comput 23: pp. 89-110 CrossRef
    7. Bobillo, F, Straccia, U (2011) Fuzzy ontology representation using OWL 2. Int J Approx Reason 52: pp. 1073-1094 CrossRef
    8. Clerici, M, Combal, B, Pekel, JF, Dubois, G, Klooster, J, Sk酶ien, JO, Bartholom茅, E (2014) The eStation, an earth observation processing service in support to ecological monitoring. Ecol Informa 18: pp. 162-170 CrossRef
    9. Denofsky, ME (1976) How near is near? A near specialist. AI Memo No. 344. MIT AI Lab, Cambridge
    10. Egenhofer MJ, Herring J (1990) A mathematical framework for the definition of topological relationships. Proceedings of the Fourth International Symposium on Spatial Data Handling, Columbus, OH, pp 803鈥?13
    11. Foster, I (2005) Service-oriented science. Science 308: pp. 814-817 CrossRef
    12. Fox, P, Hendler, JA (2009) Semantic escience: Encoding meaning in next-generation digitally enhanced science. The Fourth Paradigm: Data-Intensive Scientific Discovery, Microsoft Research, Redmond
    13. Freire, S, Santos, T, Navarro, A, Soares, F, Silva, JD, Afonso, N, Fonseca, A, Tenedorio, J (2014) Introducing mapping standards in the quality assessment of buildings extracted from very high resolution satellite imagery. ISPRS J Photogramm Remote Sens 90: pp. 1-9 CrossRef
    14. Gleason S, Ferrell R, Cheriyadat A, Vatsavai RR, De S (2010) Semantic information extraction from multispectral geospatial imagery via a flexible framework. In: Proceedings2010 I.E. International Geoscience and Remote Sensing Symposium (IGARSS2010), pp 166鈥?69
    15. Gruen, A, Kuebler, O, Agouris, P (1995) Automatic extraction of man-made objects from aerial and space images. Birkhaeuser Verlag, Basel CrossRef
    16. Herring JR (2011) OpenGIS Implementation Standard for Geographic information - Simple feature access - Part 1: Common architecture, OGC 06-103r4, 93
    17. Hey, T, Trefethen, AE (2005) Cyberinfrastructure for e-Science. Science 308: pp. 817-821 CrossRef
    18. Hudelot, C, Atif, J, Bloch, I (2008) Fuzzy spatial relation ontology for image interpretation. Fuzzy Sets Syst 159: pp. 1929-1951 CrossRef
    ISO 19109: 2002: Geographic information鈥攔ules for application schema. International Standards Organisation, Geneva
    19. Jensen, JR (1996) Introductory digital image processing: a remote sensing perspective. Prentice Hall, Upper Saddle River
    20. Klien, E (2007) A rule-based strategy for the semantic annotation of geodata. Trans GIS 11: pp. 437-452 CrossRef
    21. Klien E, Lutz M (2005) The role of spatial relations in automating the semantic annotation of geodata. In: Proceedings of the Conference on Spatial Information Theory (COSIT鈥?5), Ellicottville, New York, pp 133鈥?48
    22. Ber, F, Napoli, A (2002) The design of an object-based system for representing and classifying spatial structures and relations. J UCS 8: pp. 751-773
    23. L眉scher, P, Weibel, R, Burghardt, D (2009) Integrating ontological modelling and Bayesian inference for pattern classification in topographic vector data. Comput Environ Urban Syst 33: pp. 363-374 CrossRef
    24. Mansourian, A, Zoje, MJV, Mohammadzadeh, A, Farnaghi, M (2008) Design and implementation of an on-demand feature extraction web service to facilitate development of spatial data infrastructures. Comput Environ Urban Syst 32: pp. 377-385 CrossRef
    25. Mena, JB (2003) State of the artonautomatic road extraction for GISupdate: a novel classification. Pattern Recog Lett 24: pp. 3037-3058 CrossRef
    26. Michaelsen, E, Stilla, U, Soergel, U, Doktorski, L (2010) Extraction of building polygons from SAR images: grouping and decision-level in the GESTALT system. Pattern Recog Lett 31: pp. 1071-1076 CrossRef
    27. Nagyp谩l G, Motik B (2003) A fuzzy model for representing uncertain, subjective, and vague temporal knowledge in ontologies. In On The Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE pp 906鈥?23
    28. Naouai, M, Hamouda, A, Akkari, A, Weber, C (2011) New approach for road extraction from high resolution remotely sensed images using the quaternionic wavelet. Lect Notes Comput Sci 6669: pp. 452-459 CrossRef
    29. Perry M, Herring J (2012) OGC GeoSPARQL鈥擜 Geographic Query Language for RDF Data. Version 1.0, OGC 11-052r4, Open Geospatial Consortium, Inc
    30. Quartulli, M, Olaizola, IG (2013) A review of EO image information mining. ISPRS J Photogramm Remote Sens 75: pp. 11-28 CrossRef
    31. Randell DA, Cui Z, Cohn AG (1992) A spatial logic based on regions and connection, In: Proceedings of 3rd International Conference on Knowledge Representation and Reasoning, Morgan Kaufmann, San Mateo, pp 165鈥?76
    32. Robinson, VB (1990) Interactive machine acquisition of a fuzzy spatial relation. Comput Geosci 16: pp. 857-872 CrossRef
    33. Shariff, A, Egenhofer, M, Mark, D (1998) Natural-language spatial relations between linear and areal objects: the topology and metric of English-language terms. Int J Geogr Inf Sci 12: pp. 215-246
    34. Tatem, AJ, Goetz, SJ, Hay, SI (2008) Fifty years of earth observation satellites. Am Sci 96: pp. 390-398 CrossRef
    35. Tiede D, Huber J, Kienberger S (2012) Implementation of an interactive WebGIS based OBIA geoprocessing service. In: Proceedings International Conference on Geographic Object-Based Image Analysis, 4. (GEOBIA), May 7鈥?, 2012, Rio de Janeiro, Brazil, pp 402鈥?06
    36. Tobin, KW, Bhaduri, BL, Bright, EA, Cheriyadat, A, Karnowski, TP, Palathingal, PJ, Potok, TE, Price, JR (2006) Automated feature generation in large-scale geospatial libraries for content-based indexing. Photogramm Eng Remote Sens 72: pp. 531-540 CrossRef
    37. Zyl, TL, Vahed, A, McFerren, G, Hohls, D (2012) Earth observation scientific workflows in a distributed computing environment. Trans GIS 16: pp. 233-248 CrossRef
    38. Varanka, DE (2011) Ontology patterns for complex topographic feature types. Cartogr Geogr Inf Sci 38: pp. 126-136 CrossRef
    39. Vatsavai RR, Bhaduri B, Cheriyadat A, Arrowood L, Bright E, Gleason S, Diegert C, Katsaggelos A, Pappas T, Porter R, Bollinger J, Chen B, Hohimer R (2010a) Geospatial image mining for nuclear proliferation detection: Challenges and new opportunities. In: Proceedings 2010 I.E. International Geoscience and Remote Sensing Symposium (IGARSS2010), pp 48鈥?1
    40. Vatsavai RR, Cheriyadat A, Gleason S (2010b) Unsupervised semantic labeling framework for identification of complex facilities in high-resolution remote sensing images. In: Proceedings 2010 I.E. International Conference on Data Mining Workshops (ICDMW), Sydney, Australia, pp 273鈥?80
    41. Yang, B, Luan, X, Li, Q (2010) An adaptive method for identifying the spatial patterns in road networks. Comput Environ Urban Syst 34: pp. 40-48 CrossRef
    42. Yue, P, Gong, J, Di, L, Yuan, J, Sun, L, Sun, Z, Wang, Q (2010) GeoPW: laying blocks for the geospatial processing web. Trans GIS 14: pp. 755-772 CrossRef
    43. Yue, P, Di, L, Han, W, Zhao, P, Yang, W, He, L (2012) Service-oriented approach for geospatial feature discovery. Earth Sci Informa 5: pp. 153-165 CrossRef
    44. Yue, P, Di, L, Wei, Y, Han, W (2013) Intelligent services for discovery of complex geospatial features from remote sensing imagery. ISPRS J Photogramm Remote Sens 83: pp. 151-164 CrossRef
    45. Zhao, P, Foerster, T, Yue, P (2012) The geoprocessing web. Comput Geosci 47: pp. 3-12 CrossRef
    46. Zimmermann HJ (2001) Fuzzy sets theory and its application, Kluwer Academic Publishers, 4th ed
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Computer Applications in Geosciences
    Geosciences
    Simulation and Modeling
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1865-0481
文摘
Remote sensing images have been widely used by intelligence analysts to discover geospatial features. The overwhelming volume of remote sensing imagery requires automated methods or systems for feature discovery. Existing research focuses on automatic extraction of isolated or elementary features, such as buildings and roads. It is rather understudied to discover complex geospatial features, which is spatially composed of elementary features. From the e-Science perspective, service computing technologies have shown great promise for widespread automation of data analysis and computation. The discovery of complex features would benefit from service computing technologies by computing spatial relations and their fuzziness among elementary features using geoprocessing services. The discovery process can be automated using an ontology approach. The paper presents how ontologies for complex geospatial features, enriched with fuzzy sets of spatial relations, can automate the workflow generation. Spatial computation functions, fuzzy membership functions, and mathematical fuzzy logical operators, are provided as services, and plugged into workflows on demand to enjoy the benefits of service computing technologies. A prototype system demonstrates on-demand uncertainty-aware detection of complex geospatial features in a geoprocessing service environment.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700