Lymphangiogenesis and angiogenesis during human fetal pancreas development
详细信息    查看全文
  • 作者:Matthias S Roost (1)
    Liesbeth van Iperen (1)
    Ana de Melo Bernardo (1)
    Christine L Mummery (1)
    Fran莽oise Carlotti (2)
    Eelco JP de Koning (2) (3)
    Susana M Chuva de Sousa Lopes (1) (4)

    1. Department of Anatomy and Embryology
    ; Leiden University Medical Center ; Einthovenweg 20 ; 2333 ; ZC ; Leiden ; The Netherlands
    2. Department of Nephrology
    ; Leiden University Medical Center ; Albinusdreef 2 ; 2300 ; RC ; Leiden ; The Netherlands
    3. Hubrecht Institute for Developmental Biology and Stem Cell Research
    ; University Medical Center ; Uppsalalaan 8 ; 3584 ; CT ; Utrecht ; The Netherlands
    4. Department for Reproductive Medicine
    ; Ghent University Hospital ; De Pintelaan 185 ; 9000 ; Ghent ; Belgium
  • 关键词:Angiogenesis ; Lymphangiogenesis ; Pancreas ; Human ; Fetal development
  • 刊名:Vascular Cell
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:6
  • 期:1
  • 全文大小:4,415 KB
  • 参考文献:1. Bluestone, JA, Herold, K, Eisenbarth, G (2010) Genetics, pathogenesis and clinical interventions in type 1 diabetes. Nature 464: pp. 1293-1300 CrossRef
    2. Halban, PA, German, MS, Kahn, SE, Weir, GC (2010) Current status of islet cell replacement and regeneration therapy. J Clin Endocrinol Metab 95: pp. 1034-1043 CrossRef
    3. Weir, GC, Cavelti-Weder, C, Bonner-Weir, S (2011) Stem cell approaches for diabetes: towards beta cell replacement. Genome Med 3: pp. 61 CrossRef
    4. Carlotti, F, Zaldumbide, A, Ellenbroek, JH, Spijker, HS, Hoeben, RC, de Koning, EJ (2011) Beta-cell generation: can rodent studies be translated to humans?. J Transplant 2011: pp. 892453 CrossRef
    5. D鈥橝mour, KA, Bang, AG, Eliazer, S, Kelly, OG, Agulnick, AD, Smart, NG, Moorman, MA, Kroon, E, Carpenter, MK, Baetge, EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24: pp. 1392-1401 CrossRef
    6. Wei, R, Yang, J, Hou, W, Liu, G, Gao, M, Zhang, L, Wang, H, Mao, G, Gao, H, Chen, G, Hong, T (2013) Insulin-producing cells derived from human embryonic stem cells: comparison of definitive endoderm- and nestin-positive progenitor-based differentiation strategies. PLoS One 8: pp. e72513 CrossRef
    7. Wei, R, Yang, J, Liu, GQ, Gao, MJ, Hou, WF, Zhang, L, Gao, HW, Liu, Y, Chen, GA, Hong, TP (2013) Dynamic expression of microRNAs during the differentiation of human embryonic stem cells into insulin-producing cells. Gene 518: pp. 246-255 CrossRef
    8. Hayek, A, Beattie, GM (1997) Processing, storage and experimental transplantation of human fetal pancreatic cells. Ann Transplant 2: pp. 46-54
    9. Kroon, E, Martinson, LA, Kadoya, K, Bang, AG, Kelly, OG, Eliazer, S, Young, H, Richardson, M, Smart, NG, Cunningham, J, Agulnick, AD, D鈥橝mour, KA, Carpenter, MK, Baetge, EE (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26: pp. 443-452 CrossRef
    10. Rezania, A, Bruin, JE, Riedel, MJ, Mojibian, M, Asadi, A, Xu, J, Gauvin, R, Narayan, K, Karanu, F, O鈥橬eil, JJ, Ao, Z, Warnock, GL, Kieffer, TJ (2012) Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 61: pp. 2016-2029 1711" target="_blank" title="It opens in new window">CrossRef
    11. Polak, M, Bouchareb-Banaei, L, Scharfmann, R, Czernichow, P (2000) Early pattern of differentiation in the human pancreas. Diabetes 49: pp. 225-232 diabetes.49.2.225" target="_blank" title="It opens in new window">CrossRef
    12. Piper, K, Ball, SG, Keeling, JW, Mansoor, S, Wilson, DI, Hanley, NA (2002) Novel SOX9 expression during human pancreas development correlates to abnormalities in Campomelic dysplasia. Mech Dev 116: pp. 223-226 CrossRef
    13. Piper, K, Brickwood, S, Turnpenny, LW, Cameron, IT, Ball, SG, Wilson, DI, Hanley, NA (2004) Beta cell differentiation during early human pancreas development. J Endocrinol 181: pp. 11-23 CrossRef
    14. Wang, R, Li, J, Lyte, K, Yashpal, NK, Fellows, F, Goodyer, CG (2005) Role for beta1 integrin and its associated alpha3, alpha5, and alpha6 subunits in development of the human fetal pancreas. Diabetes 54: pp. 2080-2089 diabetes.54.7.2080" target="_blank" title="It opens in new window">CrossRef
    15. Lyttle, BM, Li, J, Krishnamurthy, M, Fellows, F, Wheeler, MB, Goodyer, CG, Wang, R (2008) Transcription factor expression in the developing human fetal endocrine pancreas. Diabetologia 51: pp. 1169-1180 CrossRef
    16. Sarkar, SA, Kobberup, S, Wong, R, Lopez, AD, Quayum, N, Still, T, Kutchma, A, Jensen, JN, Gianani, R, Beattie, GM, Jensen, J, Hayek, A, Hutton, JC (2008) Global gene expression profiling and histochemical analysis of the developing human fetal pancreas. Diabetologia 51: pp. 285-297 CrossRef
    17. Gregg, BE, Moore, PC, Demozay, D, Hall, BA, Li, M, Husain, A, Wright, AJ, Atkinson, MA, Rhodes, CJ (2012) Formation of a human beta-cell population within pancreatic islets is set early in life. J Clin Endocrinol Metab 97: pp. 3197-3206 CrossRef
    18. Riedel, MJ, Asadi, A, Wang, R, Ao, Z, Warnock, GL, Kieffer, TJ (2012) Immunohistochemical characterisation of cells co-producing insulin and glucagon in the developing human pancreas. Diabetologia 55: pp. 372-381 CrossRef
    19. Jennings, RE, Berry, AA, Kirkwood-Wilson, R, Roberts, NA, Hearn, T, Salisbury, RJ, Blaylock, J, Piper Hanley, K, Hanley, NA (2013) Development of the human pancreas from foregut to endocrine commitment. Diabetes 62: pp. 3514-3522 CrossRef
    20. Jeon, J, Correa-Medina, M, Ricordi, C, Edlund, H, Diez, JA (2009) Endocrine cell clustering during human pancreas development. J Histochem Cytochem 57: pp. 811-824 CrossRef
    21. Pan, FC, Wright, C (2011) Pancreas organogenesis: from bud to plexus to gland. Dev Dyn 240: pp. 530-565 CrossRef
    22. Ballian, N, Brunicardi, FC (2007) Islet vasculature as a regulator of endocrine pancreas function. World J Surg 31: pp. 705-714 CrossRef
    23. Lammert, E, Cleaver, O, Melton, D (2001) Induction of pancreatic differentiation by signals from blood vessels. Science 294: pp. 564-567 CrossRef
    24. Lammert, E, Gu, G, McLaughlin, M, Brown, D, Brekken, R, Murtaugh, LC, Gerber, HP, Ferrara, N, Melton, DA (2003) Role of VEGF-A in vascularization of pancreatic islets. Curr Biol 13: pp. 1070-1074 CrossRef
    25. Lukinius, A, Jansson, L, Korsgren, O (1995) Ultrastructural evidence for blood microvessels devoid of an endothelial cell lining in transplanted pancreatic islets. Am J Pathol 146: pp. 429-435
    26. Jansson, L, Carlsson, PO (2002) Graft vascular function after transplantation of pancreatic islets. Diabetologia 45: pp. 749-763 CrossRef
    27. Brissova, M, Fowler, M, Wiebe, P, Shostak, A, Shiota, M, Radhika, A, Lin, PC, Gannon, M, Powers, AC (2004) Intraislet endothelial cells contribute to revascularization of transplanted pancreatic islets. Diabetes 53: pp. 1318-1325 diabetes.53.5.1318" target="_blank" title="It opens in new window">CrossRef
    28. Cantaluppi, V, Biancone, L, Figliolini, F, Beltramo, S, Medica, D, Deregibus, MC, Galimi, F, Romagnoli, R, Salizzoni, M, Tetta, C, Segoloni, GP, Camussi, G (2012) Microvesicles derived from endothelial progenitor cells enhance neoangiogenesis of human pancreatic islets. Cell Transplant 21: pp. 1305-1320 CrossRef
    29. O鈥橫orchoe, CC (1997) Lymphatic system of the pancreas. Microsc Res Tech 37: pp. 456-477 CrossRef
    30. Rasio, EA, Hampers, CL, Soeldner, JS, Cahill, GF (1967) Diffusion of glucose, insulin, inulin, and Evans blue protein into thoracic duct lymph of man. J Clin Invest 46: pp. 903-910 172/JCI105596" target="_blank" title="It opens in new window">CrossRef
    31. Girard, JP, Moussion, C, Forster, R (2012) HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat Rev Immunol 12: pp. 762-773 CrossRef
    32. Jackson, DG (2003) The lymphatics revisited: new perspectives from the hyaluronan receptor LYVE-1. Trends Cardiovasc Med 13: pp. 1-7 1738(02)00189-5" target="_blank" title="It opens in new window">CrossRef
    33. Jurisic, G, Detmar, M (2009) Lymphatic endothelium in health and disease. Cell Tissue Res 335: pp. 97-108 CrossRef
    34. Ordonez, NG (2012) Immunohistochemical endothelial markers: a review. Adv Anat Pathol 19: pp. 281-295 CrossRef
    35. Adams, RH, Alitalo, K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8: pp. 464-478 CrossRef
    36. Choi, I, Lee, S, Hong, YK (2012) The new era of the lymphatic system: no longer secondary to the blood vascular system. Cold Spring Harb Perspect Med 2: pp. a006445 CrossRef
    37. Jin, ZW, Nakamura, T, Yu, HC, Kimura, W, Murakami, G, Cho, BH (2010) Fetal anatomy of peripheral lymphatic vessels: a D2-40 immunohistochemical study using an 18-week human fetus (CRL 155 mm). J Anat 216: pp. 671-682 CrossRef
    38. Jeong, YJ, Cho, BH, Kinugasa, Y, Song, CH, Hirai, I, Kimura, W, Fujimiya, M, Murakami, G (2009) Fetal topohistology of the mesocolon transversum with special reference to fusion with other mesenteries and fasciae. Clin Anat 22: pp. 716-729 CrossRef
    39. Pusztaszeri, MP, Seelentag, W, Bosman, FT (2006) Immunohistochemical expression of endothelial markers CD31, CD34, von Willebrand factor, and Fli-1 in normal human tissues. J Histochem Cytochem 54: pp. 385-395 CrossRef
    40. ten Dijke, P, Goumans, MJ, Pardali, E (2008) Endoglin in angiogenesis and vascular diseases. Angiogenesis 11: pp. 79-89 CrossRef
    41. Li, DY, Sorensen, LK, Brooke, BS, Urness, LD, Davis, EC, Taylor, DG, Boak, BB, Wendel, DP (1999) Defective angiogenesis in mice lacking endoglin. Science 284: pp. 1534-1537 CrossRef
    42. Folkman, J, D鈥橝more, PA (1996) Blood vessel formation: what is its molecular basis?. Cell 87: pp. 1153-1155 CrossRef
    43. Wu, J, Bohanan, CS, Neumann, JC, Lingrel, JB (2008) KLF2 transcription factor modulates blood vessel maturation through smooth muscle cell migration. J Biol Chem 283: pp. 3942-3950 CrossRef
    44. Attout, T, Hoerauf, A, Denece, G, Debrah, AY, Marfo-Debrekyei, Y, Boussinesq, M, Wanji, S, Martinez, V, Mand, S, Adjei, O, Bain, O, Specht, S, Martin, C (2009) Lymphatic vascularisation and involvement of Lyve-1+ macrophages in the human onchocerca nodule. PLoS One 4: pp. e8234 CrossRef
    45. Harvey, NL, Gordon, EJ (2012) Deciphering the roles of macrophages in developmental and inflammation stimulated lymphangiogenesis. Vasc Cell 4: pp. 15 CrossRef
    46. Schroedl, F, Brehmer, A, Neuhuber, WL, Kruse, FE, May, CA, Cursiefen, C (2008) The normal human choroid is endowed with a significant number of lymphatic vessel endothelial hyaluronate receptor 1 (LYVE-1)-positive macrophages. Invest Ophthalmol Vis Sci 49: pp. 5222-5229 1721" target="_blank" title="It opens in new window">CrossRef
    47. Paupert, J, Sounni, NE, Noel, A (2011) Lymphangiogenesis in post-natal tissue remodeling: lymphatic endothelial cell connection with its environment. Mol Aspects Med 32: pp. 146-158 CrossRef
    48. Maby-El Hajjami, H, Petrova, TV (2008) Developmental and pathological lymphangiogenesis: from models to human disease. Histochem Cell Biol 130: pp. 1063-1078 CrossRef
    49. Tammela, T, Alitalo, K (2010) Lymphangiogenesis: Molecular mechanisms and future promise. Cell 140: pp. 460-476 CrossRef
    50. Sauter, B, Foedinger, D, Sterniczky, B, Wolff, K, Rappersberger, K (1998) Immunoelectron microscopic characterization of human dermal lymphatic microvascular endothelial cells. Differential expression of CD31, CD34, and type IV collagen with lymphatic endothelial cells vs blood capillary endothelial cells in normal human skin, lymphangioma, and hemangioma in situ. J Histochem Cytochem 46: pp. 165-176 177/002215549804600205" target="_blank" title="It opens in new window">CrossRef
    51. Lutter, S, Xie, S, Tatin, F, Makinen, T (2012) Smooth muscle-endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation. J Cell Biol 197: pp. 837-849 CrossRef
    52. Norrmen, C, Ivanov, KI, Cheng, J, Zangger, N, Delorenzi, M, Jaquet, M, Miura, N, Puolakkainen, P, Horsley, V, Hu, J, Augustin, HG, Yl盲-Herttuala, S, Alitalo, K, Petrova, TV (2009) FOXC2 controls formation and maturation of lymphatic collecting vessels through cooperation with NFATc1. J Cell Biol 185: pp. 439-457 CrossRef
    53. Rubbia-Brandt, L, Terris, B, Giostra, E, Dousset, B, Morel, P, Pepper, MS (2004) Lymphatic vessel density and vascular endothelial growth factor-C expression correlate with malignant behavior in human pancreatic endocrine tumors. Clin Cancer Res 10: pp. 6919-6928 CrossRef
    54. Ashworth, MA, Leach, FN, Milner, RD (1973) Development of insulin secretion in the human fetus. Arch Dis Child 48: pp. 151-152 CrossRef
    55. Hoffman, L, Mandel, TE, Carter, WM, Koulmanda, M, Martin, FI (1982) Insulin secretion by fetal human pancreas in organ culture. Diabetologia 23: pp. 426-430 CrossRef
    56. Milner, RD, Ashworth, MA, Barson, AJ (1972) Insulin release from human foetal pancreas in response to glucose, leucine and arginine. J Endocrinol 52: pp. 497-505 CrossRef
    57. Otonkoski, T, Andersson, S, Knip, M, Simell, O (1988) Maturation of insulin response to glucose during human fetal and neonatal development. Studies with perifusion of pancreatic isletlike cell clusters. Diabetes 37: pp. 286-291 CrossRef
    58. Makinen, T, Norrmen, C, Petrova, TV (2007) Molecular mechanisms of lymphatic vascular development. Cell Mol Life Sci 64: pp. 1915-1929 CrossRef
    59. Buttler, K, Ezaki, T, Wilting, J (2008) Proliferating mesodermal cells in murine embryos exhibiting macrophage and lymphendothelial characteristics. BMC Dev Biol 8: pp. 43 CrossRef
    60. Buttler, K, Kreysing, A, von Kaisenberg, CS, Schweigerer, L, Gale, N, Papoutsi, M, Wilting, J (2006) Mesenchymal cells with leukocyte and lymphendothelial characteristics in murine embryos. Dev Dyn 235: pp. 1554-1562 CrossRef
  • 刊物主题:Angiology; Cardiology;
  • 出版者:BioMed Central
  • ISSN:2045-824X
文摘
Background The complex endocrine and exocrine functionality of the human pancreas depends on an efficient fluid transport through the blood and the lymphatic vascular systems. The lymphatic vasculature has key roles in the physiology of the pancreas and in regulating the immune response, both important for developing successful transplantation and cell-replacement therapies to treat diabetes. However, little is known about how the lymphatic and blood systems develop in humans. Here, we investigated the establishment of these two vascular systems in human pancreas organogenesis in order to understand neovascularization in the context of emerging regenerative therapies. Methods We examined angiogenesis and lymphangiogenesis during human pancreas development between 9 and 22 weeks of gestation (W9-W22) by immunohistochemistry. Results As early as W9, the peri-pancreatic mesenchyme was populated by CD31-expressing blood vessels as well as LYVE1- and PDPN-expressing lymphatic vessels. The appearance of smooth muscle cell-coated blood vessels in the intra-pancreatic mesenchyme occurred only several weeks later and from W14.5 onwards the islets of Langerhans also became heavily irrigated by blood vessels. In contrast to blood vessels, LYVE1- and PDPN-expressing lymphatic vessels were restricted to the peri-pancreatic mesenchyme until later in development (W14.5-W17), and some of these invading lymphatic vessels contained smooth muscle cells at W17. Interestingly, between W11-W22, most large caliber lymphatic vessels were lined with a characteristic, discontinuous, collagen type IV-rich basement membrane. Whilst lymphatic vessels did not directly intrude the islets of Langerhans, three-dimensional reconstruction revealed that they were present in the vicinity of islets of Langerhans between W17-W22. Conclusion Our data suggest that the blood and lymphatic machinery in the human pancreas is in place to support endocrine function from W17-W22 onwards. Our study provides the first systematic assessment of the progression of lymphangiogenesis during human pancreatic development.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700