Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000-2012: a high-resolution spatiotemporal prediction
详细信息    查看全文
  • 作者:Daniel J Weiss (1)
    Samir Bhatt (1)
    Bonnie Mappin (1)
    Thomas P Van Boeckel (3)
    David L Smith (2) (4)
    Simon I Hay (1) (4)
    Peter W Gething (1)

    1. Department of Zoology
    ; Spatial Ecology and Epidemiology Group ; Tinbergen Building ; University of Oxford ; South Parks Road ; Oxford ; UK
    3. Department of Ecology and Evolutionary Biology
    ; Princeton University ; Princeton ; NJ ; USA
    2. Malaria Research Institute & Department of Epidemiology
    ; Johns Hopkins Bloomberg School of Public Health ; Baltimore ; MD ; USA
    4. Fogarty International Center
    ; National Institutes of Health ; Bethesda ; MD ; USA
  • 关键词:Temperature suitability ; Plasmodium falciparum ; Africa
  • 刊名:Malaria Journal
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:13
  • 期:1
  • 全文大小:1,046 KB
  • 参考文献:1. Nikolaev, BP (1935) The influence of temperature on the development of the malaria parasite in the mosquito (in Russian). Tr Paster Inst Epidem Bakt (Leningr) 2: pp. 108
    2. Celli, A (1900) Remarks on the epidemiology and prophylaxis of malaria in the light of recent researches. Br Med J 1: pp. 301-306 CrossRef
    3. Hay, SI, Omumbo, JA, Craig, MH, Snow, RW (2000) Earth observation, geographic information systems and Plasmodium falciparum malaria in sub-Saharan Africa. Adv Parasito 47: pp. 173-215 CrossRef
    4. Reiner, RC, Perkins, TA, Barker, CM, Niu, T, Chaves, LF, Ellis, AM, George, DB, Le Menach, A, Pulliam, JR, Bisanzio, D (2013) A systematic review of mathematical models of mosquito-borne pathogen transmission: 1970鈥?010. J Royal Soc Interface 10: pp. 20120921 CrossRef
    5. Bayoh, MN, Lindsay, SW (2003) Effect of temperature on the development of the aquatic stages of Anopheles gambiae sensu stricto (Diptera: Culicidae). Bull Entomol Res 93: pp. 375-381 CrossRef
    6. Bayoh, MN, Lindsay, SW (2004) Temperature-related duration of aquatic stages of the Afrotropical malaria vector mosquito Anopheles gambiae in the laboratory. Med Vet Entomol 18: pp. 174-179 CrossRef
    7. Ahumada, JA, Lapointe, D, Samuel, MD (2004) Modeling the population dynamics of Culex quinquefasciatus (Diptera: Culicidae), along an elevational gradient in Hawaii. J Med Entomol 41: pp. 1157-1170 CrossRef
    8. Mahmood, F, Reisen, WK (1981) Duration of the gonotrophic cycle of Anopheles culicifacies Giles and Anopheles stephensi Liston, with observations on reproductive activity and survivorship during winter in Punjab province, Pakistan. Mosq News 41: pp. 41-50
    9. Clements, AN, Paterson, GD (1981) The analysis of mortality and survival rates in wild populations of mosquitoes. J Appl Ecol 18: pp. 373-399 CrossRef
    10. Kiszewski, A, Mellinger, A, Spielman, A, Malaney, P, Sachs, SE, Sachs, J (2004) A global index representing the stability of malaria transmission. Am J Trop Med Hyg 70: pp. 486-498
    11. Guerra, CA, Howes, RE, Patil, AP, Gething, PW, Van Boeckel, TP, Temperley, WH, Kabaria, CW, Tatem, AJ, Manh, BH, Elyazar, IRF, Baird, JK, Snow, RW, Hay, SI (2010) The international limits and population at risk of Plasmodium vivax transmission in 2009. PLoS Negl Trop Dis 4: pp. e774 CrossRef
    12. Hay, SI, Guerra, CA, Gething, PW, Patil, AP, Tatem, AJ, Noor, AM, Kabaria, CW, Manh, BH, Elyazar, IRF, Brooker, SJ, Smith, DL, Moyeed, RA, Snow, RW (2009) A world malaria map: Plasmodium falciparum endemicity in 2007. PLoS Med 6: pp. e1000048 CrossRef
    13. Gething, PW, Smith, DL, Patil, AP, Tatem, AJ, Snow, RW, Hay, SI (2010) Climate change and the global malaria recession. Nature 465: pp. 342-345 CrossRef
    14. Gething, PW, Patil, AP, Hay, SI (2010) Quantifying aggregated uncertainty in Plasmodium falciparum malaria prevalence and populations at risk via efficient space-time geostatistical joint simulation. PLoS Comput Biol 6: pp. e1000724 CrossRef
    15. Gething, PW, Patil, A, Smith, D, Guerra, C, Elyazar, I, Johnston, G, Tatem, A, Hay, S (2011) A new world malaria map: Plasmodium falciparum endemicity in 2010. Malar J 10: pp. 378 CrossRef
    16. Gething, PW, Elyazar, IRF, Moyes, CM, Smith, DL, Battle, KE, Guerra, CA, Patil, AP, Tatem, AJ, Howes, RE, Myers, MF, George, DB, Horby, P, Wertheim, HFL, Price, RN, M眉eller, I, Baird, JK, Hay, SI (2012) A long neglected world malaria map: Plasmodium vivax endemicity in 2010. PLoS Negl Trop Dis 6: pp. e1814 CrossRef
    17. Craig, MH, Snow, RW, le Sueur, D (1999) A climate-based distribution model of malaria transmission in sub-Saharan Africa. Parasitol Today 15: pp. 105-111 CrossRef
    18. Gething, P, Van Boeckel, T, Smith, D, Guerra, C, Patil, A, Snow, R, Hay, S (2011) Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax. Parasites & Vectors 4: pp. 92 CrossRef
    19. Garske, T, Ferguson, NM, Ghani, AC (2013) Estimating air temperature and its influence on malaria transmission across Africa. PLoS One 8: pp. e56487 CrossRef
    20. Paaijmans, KP, Blanford, S, Bell, AS, Blanford, JI, Read, AF, Thomas, MB (2010) Influence of climate on malaria transmission depends on daily temperature variation. Proc Natl Acad Sci U S A 107: pp. 15135-15139 CrossRef
    21. Paaijmans, KP, Read, AF, Thomas, MB (2009) Understanding the link between malaria risk and climate. Proc Natl Acad Sci U S A 106: pp. 13844-13849 CrossRef
    22. Hijmans, RJ, Cameron, SE, Parra, JL, Jones, PG, Jarvis, A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25: pp. 1965-1978 CrossRef
    23. Gething, PW, Battle, KE, Bhatt, S, Smith, DL, Eisele, TP, Cibulskis, RE, Hay, SI (2014) Declining malaria in Africa: improving the measurement of progress. Malar J 13: pp. 39 CrossRef
    24. Hay, SI, Tatem, AJ, Graham, AJ, Goetz, SJ, Rogers, DJ (2006) Global environmental data for mapping infectious disease distribution. Adv Parasitol 62: pp. 37-77 CrossRef
    25. Pigott, DM, Atun, R, Moyes, CL, Hay, SI, Gething, PW (2012) Funding for malaria control 2006鈥?010: A comprehensive global assessment. Malar J 11: pp. 1-11 CrossRef
    26. Snow, RW, Okiro, EA, Gething, PW, Atun, R, Hay, SI (2010) Equity and adequacy of international donor assistance for global malaria control: an analysis of populations at risk and external funding commitments. Lancet 376: pp. 1409-1416 CrossRef
    World Malaria Report 2012. World Health Organization, Geneva
    27. National Aeronautics and Space Administration: MODIS Available at: http://modis.gsfc.nasa.gov/ (accessed 1st November 2013) Available at: (accessed 1st November 2013)
    28. Tatem, AJ, Goetz, SJ, Hay, SI (2004) Terra and Aqua: new data for epidemiology and public health. Int J Appl Earth Obs Geoinformation 6: pp. 33-46 CrossRef
    29. Wan, Z, Zhang, Y, Zhang, Q, Li, Z-l (2002) Validation of the land-surface temperature products retrieved from Terra Moderate Resolution Imaging Spectroradiometer data. Remote Sens Environ 83: pp. 163-180 CrossRef
    30. Vancutsem, C, Ceccato, P, Dinku, T, Connor, SJ (2010) Evaluation of MODIS land surface temperature data to estimate air temperature in different ecosystems over Africa. Remote Sens Environ 114: pp. 449-465 CrossRef
    31. Nemani, RR, Running, SW (1989) Estimation of regional surface resistance to evapotranspiration from NDVI and thermal-IR AVHRR data. J Appl Meteorol 28: pp. 276-284 CrossRef
    32. Stisen, S, Sandholt, I, Norgaard, A, Fensholt, R, Eklundh, L (2007) Estimation of diurnal air temperature using MSG SEVIRI data in West Africa. Remote Sens Environ 110: pp. 262-274 CrossRef
    33. Goetz, SJ, Prince, SD, Small, J (2000) Advances in satellite remote sensing of environmental variables for epidemiological applications. Adv Parasitol 47: pp. 289-307 CrossRef
    34. Carlson, T (2007) An overview of the 鈥淭riangle Method鈥?for estimating surface eapotranspiration and soil moisture from satellite imagery. Sensors 7: pp. 1612-1629 CrossRef
    35. Lin, S, Moore, NJ, Messina, JP, DeVisser, MH, Wu, J (2012) Evaluation of estimating daily maximum and minimum air temperature with MODIS data in east Africa. Int J Appl Earth Obs Geoinformation 18: pp. 128-140 CrossRef
    36. Cresswell, MP, Morse, AP, Thomson, MC, Connor, SJ (1999) Estimating surface air temperatures, from Meteosat land surface temperatures, using an empirical solar zenith angle model. Int J Remote Sens 20: pp. 1125-1132 CrossRef
    37. Mildrexler, DJ, Zhao, M, Running, SW (2011) A global comparison between station air temperatures and MODIS land surface temperatures reveals the cooling role of forests. J Geophys Res 116: pp. G03025
    38. Carlson, TN, Boland, FE (1978) Analysis of urban-rural canopy using a surface heat flux/temperature model. J Appl Meteorol 17: pp. 998-1013 CrossRef
    39. Carlson, TN, Dodd, JK, Benjamin, SG, Cooper, JN (1981) Satellite estimation of the surface energy balance, moisture availability and thermal inertia. J Appl Meteorol 20: pp. 67-87 CrossRef
    40. Forsythe, WC, Rykiel, EJ, Stahl, RS, Wu, H-i, Schoolfield, RM (1995) A model comparison for daylength as a function of latitude and day of year. Ecol Model 80: pp. 87-95 CrossRef
    Almanac for computers. Nautical Almanac Office, United States Naval Observatory, Washington, D.C
    41. Boyd, MF Epidemiology: factors related to the definitive host. In: Boyd, MF eds. (1949) Malariology (Volume 1). W.B. Saunders Company, London, U.K, pp. 608-697
    42. Detinova, TS (1962) Age-grouping methods in Diptera of medical importance, with special reference to some vectors of malaria. World Health Organization, Geneva
    43. Rogers, DJ, Randolph, SE, Snow, RW, Hay, SI (2002) Satellite imagery in the study and forecast of malaria. Nature 415: pp. 710-715 CrossRef
    44. Hay, SI, Snow, RW, Rogers, DJ (1998) Predicting malaria seasons in Kenya using multitemporal meteorological satellite sensor data. Trans R Soc Trop Med Hyg 92: pp. 12-20 CrossRef
  • 刊物主题:Parasitology; Infectious Diseases; Tropical Medicine;
  • 出版者:BioMed Central
  • ISSN:1475-2875
文摘
Background Temperature suitability for malaria transmission is a useful predictor variable for spatial models of malaria infection prevalence. Existing continental or global models, however, are synoptic in nature and so do not characterize inter-annual variability in seasonal patterns of temperature suitability, reducing their utility for predicting malaria risk. Methods A malaria Temperature Suitability Index (TSI) was created by first modeling minimum and maximum air temperature with an eight-day temporal resolution from gap-filled MODerate Resolution Imaging Spectroradiometer (MODIS) daytime and night-time Land Surface Temperature (LST) datasets. An improved version of an existing biological model for malaria temperature suitability was then applied to the resulting temperature information for a 13-year data series. The mechanism underlying this biological model is simulation of emergent mosquito cohorts on a two-hour time-step and tracking of each cohort throughout its life to quantify the impact air temperature has on both mosquito survival and sporozoite development. Results The results of this research consist of 154 monthly raster surfaces that characterize spatiotemporal patterns in TSI across Africa from April 2000 through December 2012 at a 1 km spatial resolution. Generalized TSI patterns were as expected, with consistently high values in equatorial rain forests, seasonally variable values in tropical savannas (wet and dry) and montane areas, and low values in arid, subtropical regions. Comparisons with synoptic approaches demonstrated the additional information available within the dynamic TSI dataset that is lost in equivalent synoptic products derived from long-term monthly averages. Conclusions The dynamic TSI dataset presented here provides a new product with far richer spatial and temporal information than any other presently available for Africa. As spatiotemporal malaria modeling endeavors evolve, dynamic predictor variables such as the malaria temperature suitability data developed here will be essential for the rational assessment of changing patterns of malaria risk.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700