Numerical evaluation of the coefficients of thermal expansion of fibers in composite materials using a lamina-scale cost function with quasi-analytical gradients
详细信息    查看全文
  • 作者:Jae Hyuk Lim (1)
    Jean-Baptiste Charpentier (2)
    Dongwoo Sohn (3)

    1. Satellite Mechanical Department
    ; Korea Aerospace Research Institute ; 169-84 Gwahak-ro ; Yuseong-gu ; Daejeon ; 305-806 ; Korea
    2. Mechanical Engineering Department
    ; 脡cole Nationale Sup茅rieur des Mines de Saint-脡tienne ; 158 ; cours Fauriel ; F-42023 ; Saint-脡tienne cedex 2 ; France
    3. Division of Mechanical Engineering
    ; College of Engineering ; Korea Maritime and Ocean University ; 727 Taejong-ro ; Yeongdo-gu ; Busan ; 606-791 ; Korea
  • 关键词:Representative volume element (RVE) ; Inverse analysis ; Coefficient of thermal expansion (CTE) ; Quasi ; analytical gradient ; Unidirectional (UD) composite
  • 刊名:Journal of Mechanical Science and Technology
  • 出版年:2015
  • 出版时间:March 2015
  • 年:2015
  • 卷:29
  • 期:3
  • 页码:1187-1197
  • 全文大小:2,744 KB
  • 参考文献:1. Farinelli, C., Kim, H.-I., Han, J.-H. (2012) Feasibility study to actively compensate deformations of composite structure in a space environment. Int. J. Aeronaut. Space Sci. 13: pp. 221-228
    2. Daniel, I. M., Ishai, O. (1994) Engineering mechanics of composite materials. Oxford University Press, New York, USA
    3. Schapery, R. A. (1968) Thermal expansion coefficients of composite materials based on energy principles. J. Compos. Mater. 2: pp. 380-404 CrossRef
    4. Sideridis, E. (1994) Thermal expansion coefficients of fiber composites defined by the concept of the interphase. Compos. Sci. Technol. 51: pp. 301-317 538(94)90100-7" target="_blank" title="It opens in new window">CrossRef
    5. Halpin, J. C. (1969) Effects of environmental factors on composite materials.
    6. Mori, T., Tanaka, K. (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21: pp. 571-574 CrossRef
    7. Chou, T.-W., Nomura, S., Taya, M. (1980) A self-consistent approach to the elastic stiffness of short-fiber composites. J. Compos. Mater. 14: pp. 178-188 CrossRef
    8. Karadeniz, Z. H., Kumlutas, D. (2007) A numerical study on the coefficients of thermal expansion of fiber reinforced composite materials. Compos. Struct. 78: pp. 1-10 5.11.034" target="_blank" title="It opens in new window">CrossRef
    9. Li, S., Warrior, N., Zou, Z., Almaskari, F. (2011) A unit cell for FE analysis of materials with the microstructure of a staggered pattern. Compos. Part A: Appl. Sci. Manuf. 42: pp. 801-811 CrossRef
    10. Li, S. (2008) Boundary conditions for unit cells from periodic microstructures and their implications. Compos. Sci. Technol. 68: pp. 1962-1974 5" target="_blank" title="It opens in new window">CrossRef
    11. Islam, R., Sj枚lind, S. G., Pramila, A. (2001) Finite element analysis of linear thermal expansion coefficients of unidirectional cracked composites. J. Compos. Mater. 35: pp. 1762-1776
    12. Yu, W., Tang, T. (2007) A variational asymptotic micromechanics model for predicting thermoelastic properties of heterogeneous materials. Int. J. Solids Struct. 44: pp. 7510-7525 CrossRef
    13. Choi, G. P., Sohn, D., Woo, C. H., Lee, S.-H., Ahn, S. H., Cho, Y.-S. (2013) Qualitative verification of the dispersion level in nano-composite and its application to YD-128/MWCNT composite to assess the wear characteristics with respect to the dispersion level. J. Mech. Sci. Technol. 27: pp. 3131-3138 CrossRef
    14. Liu, X., Wang, R., Wu, Z., Liu, W. (2012) The effect of triangleshape carbon fiber on the flexural properties of the carbon fiber reinforced plastics. Mater. Lett. 73: pp. 21-23 CrossRef
    15. Park, S.-J., Seo, M.-K., Shim, H.-B. (2003) Effect of fiber shapes on physical characteristics of non-circular carbon fibersreinforced composites. Mater. Sci. Eng. A 352: pp. 34-39 5093(02)00463-X" target="_blank" title="It opens in new window">CrossRef
    16. Kim, H. G. (2008) Effects of fiber aspect ratio evaluated by elastic analysis in discontinuous composites. J. Mech. Sci. Technol. 22: pp. 411-419 CrossRef
    17. Kuentzer, N., Simacek, P., Advani, S. G., Walsh, S. (2007) Correlation of void distribution to VARTM manufacturing techniques. Compos. Part A: Appl. Sci. Manuf. 38: pp. 802-813 5" target="_blank" title="It opens in new window">CrossRef
    18. Huang, H., Talreja, R. (2005) Effects of void geometry on elastic properties of unidirectional fiber reinforced composites. Compos. Sci. Technol. 65: pp. 1964-1981 5.02.019" target="_blank" title="It opens in new window">CrossRef
    19. Guo, R., Shi, H., Yao, Z. (2003) Modeling of interfacial debonding crack in particle reinforced composites using Voronoi cell finite element method. Comput. Mech. 32: pp. 52-59 CrossRef
    20. Rabczuk, T., Belytschko, T. (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int. J. Numer. Methods Eng. 61: pp. 2316-2343 51" target="_blank" title="It opens in new window">CrossRef
    21. Huang, Y., Jin, K. K., Ha, S. K. (2008) Effects of fiber arrangement on mechanical behavior of unidirectional composites. J. Compos. Mater. 42: pp. 1851-1871 CrossRef
    22. Rupnowski, P., Gentz, M., Sutter, J. K., Kumosa, M. (2005) An evaluation of the elastic properties and thermal expansion coefficients of medium and high modulus graphite fibers. Compos. Part A: Appl. Sci. Manuf. 36: pp. 327-338 CrossRef
    23. Kulkarni, R., Ochoa, O. (2006) Transverse and longitudinal CTE measurements of carbon fibers and their impact on interfacial residual stresses in composites. J. Compos. Mater. 40: pp. 733-754 5055545" target="_blank" title="It opens in new window">CrossRef
    24. Pradere, C., Batsale, J. C., Goyheneche, J. M., Pailler, R., Dilhaire, S. (2007) Estimation of the transverse coefficient of thermal expansion on carbon fibers at very high temperature. Inverse Probl. Sci. Eng. 15: pp. 77-89 5970600574047" target="_blank" title="It opens in new window">CrossRef
    25. Pradere, C., Sauder, C. (2008) Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures (300鈥?500K). Carbon 46: pp. 1874-1884 5" target="_blank" title="It opens in new window">CrossRef
    26. Ban, J.-S., Lee, K.-W., Kim, S.-J., Cho, K.-Z. (2008) A study on the microstructural property and thermal property of Ti-alloys without Al as biomaterials. J. Mech. Sci. Technol. 22: pp. 1447-1450 511-9" target="_blank" title="It opens in new window">CrossRef
    27. Sockalingam, S., Nilakantan, G. (2012) Fiber-matrix interface characterization through the microbond test. Int. J. Aeronaut. Space Sci. 13: pp. 282-295
    28. Arora, J. (2004) Introduction to optimum design. Academic Press, New York, USA
    29. Kreyszig, E. (2011) Advanced engineering mathematics. John Wiley & Sons, New York, USA
    30. Hashin, Z. (1979) Analysis of properties of fiber composites with anisotropic constituents. J. Appl. Mech. 46: pp. 543-550 5/1.3424603" target="_blank" title="It opens in new window">CrossRef
    31. Strife, J. R., Prewo, K. M. (1979) The thermal expansion behavior of unidirectional and bidirectional Kevlar/epoxy composites. J. Compos. Mater. 13: pp. 264-277 CrossRef
    32. / Matlab User鈥檚 Guide (R2012a), MathWorks (2012).
    33. / Abaqus Analysis User鈥檚 Manual (6.10), Dassault Syst猫mes (2010).
    34. Lagarias, J. C., Reeds, J. A., Wright, M. H., Wright, P. E. (1998) Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9: pp. 112-147 52623496303470" target="_blank" title="It opens in new window">CrossRef
    35. Kaddour, A. S., Hinton, M. J., Smith, P. A., Li, S. (2013) Mechanical properties and details of composite laminates for the test cases used in the third world-wide failure exercise. J. Compos. Mater. 47: pp. 2427-2442 CrossRef
    36. Breitzman, T. D. (2005) Multiscale strain analysis.
    37. Miyagawa, H., Mase, T., Sato, C., Drown, E., Drzal, L. T., Ikegami, K. (2006) Comparison of experimental and theoretical transverse elastic modulus of carbon fibers. Carbon 44: pp. 2002-2008 CrossRef
    38. Sauder, C., Lamon, J. (2005) Prediction of elastic properties of carbon fibers and CVI matrices. Carbon 43: pp. 2044-2053 5.03.019" target="_blank" title="It opens in new window">CrossRef
  • 刊物类别:Engineering
  • 刊物主题:Mechanical Engineering
    Structural Mechanics
    Control Engineering
    Industrial and Production Engineering
  • 出版者:The Korean Society of Mechanical Engineers
  • ISSN:1976-3824
文摘
In this work, the coefficients of thermal expansion (CTEs) of fibers in composite materials that contain microstructures are numerically evaluated using a lamina-scale cost function with quasi-analytical gradients. To consider the effects of fiber arrangements and local defects, such as interface debonding and voids, a variety of representative volume elements are modeled with a number of finite element meshes. Then, the CTEs of fibers are evaluated by minimizing a lamina-scale cost function that represents the difference between the measured CTEs and the computed CTEs by means of a computational homogenization scheme for the composite lamina. The descent direction of the cost function is obtained using quasi-analytical gradients that take partial derivatives from prediction models, such as the Schapery model and Hashin model defined in an explicit manner, which accelerates the minimization procedure. To verify the performance of the proposed scheme in terms of accuracy and efficiency, the CTEs of constituents calculated using the proposed scheme in a unidirectional composite lamina are compared with experimental values reported in the literature. Furthermore, the convergence behavior of the proposed scheme with quasi-analytical gradients is also investigated and compared with other minimization methods.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700