Multi-objective genetic programming approach for robust modeling of complex manufacturing processes having probabilistic uncertainty in experimental data
详细信息    查看全文
文摘
In this paper, a multi-objective uniform-diversity genetic programming (MUGP) algorithm deployed for robust Pareto modeling and prediction of complex nonlinear processes using some input-output data table. The uncertainties included in measured data are considered to obtain more robust models. The considered benchmarks are an explosive cutting and forming processes, in which the nonlinear behavior between the input and output of processes are detected using MUGP. For both case studies, a multi-objective modeling and prediction procedure firstly performed using deterministic data. Secondly, the same identification procedure carried out using probabilistic uncertainty in the experimental input-output data. The objective functions considered are namely, training error, prediction error and number of tree nodes (complexity of models) in the deterministic approach. Accordingly, the mean and standard deviation of training error and prediction error are considered in robust Pareto modeling and prediction of such processes. In this way, Pareto front of such modeling and prediction is first obtained for both explosive cutting and forming processes with deterministic data. Such Pareto front is then obtained using experimental input-output-data having probabilistic uncertainty in input parameters through a Monte Carlo simulation (MCS) approach. In addition, it has been shown that for both cases, the trade-off models obtained from deterministic data have significant biases when tested on data with probabilistic uncertainty. Finally, the obtained results of such multi-objective robust model identification show promising results in terms of compensating uncertainty in the experimental input-output-data.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700