Oak ribosomal DNA: characterization by FISH and polymorphism assessed by IGS PCR–RFLP
详细信息    查看全文
  • 作者:João P. Coutinho ; Ana Carvalho ; Antonio Martín…
  • 关键词:Fagaceae ; Fluorescent in situ hybridization (FISH) ; Intergenic spacer (IGS) ; Quercus ; Restriction fragment length polymorphism (RFLP) ; 35S rDNA
  • 刊名:Plant Systematics and Evolution
  • 出版年:2016
  • 出版时间:May 2016
  • 年:2016
  • 卷:302
  • 期:5
  • 页码:527-544
  • 全文大小:1,201 KB
  • 参考文献:Appels R, Dvořák J (1982) The wheat ribosomal DNA spacer region: its structure and variation in populations and among species. Theor Appl Genet 63:337–348CrossRef PubMed
    Bacchetta G (2001) Números cromosomáticos de plantas occidentales. Anales Jard Bot Madrid 58:341–342
    Bauer N, Horvat T, Birus I, Vicic V, Zoldos V (2009) Nucleotide sequence, structural organization and length heterogeneity of ribosomal DNA intergenic spacer in Quercus petraea (Matt.) Liebl. and Q. robur L. Molec Genet Genomics 281:207–221CrossRef
    Belahbib N, Pemonge MH, Ouassou A, Sbay H, Kremer A, Petit RJ (2001) Frequent cytoplasmic exchanges between oak species that are not closely related: Quercus suber and Q. ilex in Morocco. Molec Ecol 10:2003–2012CrossRef
    Bellarosa R (2003) Brief synthesis of the current knowledge on cork oak. In: Varela MC (ed.) Handbook of the EU concerted action on cork oak, FAIR I CT 95 0202, INIA, Lisbon, pp 11–22
    Bellarosa R, Delre V, Schirone B, Maggin F (1990) Ribosomal RNA genes in Quercus spp. (Fagaceae). Pl Syst Evol 172:127–139CrossRef
    Bellarosa R, Simeone MC, Papini A, Schirone B (2005) Utility of ITS sequence data for phylogenetic reconstruction of Italian Quercus spp. Molec Phylogen Evol 34:355–370CrossRef
    Bik HM, Fournier D, Sung W, Bergeron RD, Thomas WK (2013) Intra-genomic variation in the ribosomal repeats of nematodes. PLOS One 8(10):e78230. doi:10.​1371/​journal.​pone.​0078230 CrossRef PubMed PubMedCentral
    Butorina AK (1993) Cytogenetic study of diploid and spontaneous triploid oaks Quercus robur L. Ann Forest Sci 50(1):144s–150sCrossRef
    Byung-Yun S, Park JH, Kwak MJ, Kim CH, Kim KS (1996) Chromosome counts from the flora of Korea with emphasis on Apiaceae. J Pl Biol 39:15–22
    Cao M, Zhou ZK (2000) A karyotype analysis of nine species of the Quercus from China. Guihaia 20:341–345
    Carvalho A, Paula A, Guedes-Pinto H, Martins L, Carvalho J, Lima-Brito J (2009) Preliminary genetic approach based on both cytogenetic and molecular characterizations of nine oak species. Pl Biosyst 143:S25–S33CrossRef
    Carvalho A, Polanco C, Lima-Brito J, Guedes-Pinto H (2010) Differential rRNA genes expression in hexaploid wheat related to NOR Methylation. Pl Molec Biol Reporter 28:403–412CrossRef
    Carvalho A, Guedes-Pinto H, Lima-Brito J (2011) Intergenic spacer length variants in Old Portuguese bread wheat cultivars. J Genet 90:203–208CrossRef PubMed
    Chokchaichamnankit P, Chulalaksananukul W, Phengklai C, Anamthawat-Jónsson K (2007) Karyotypes of some species of Castanopsis, Lithocarpus and Quercus (Fagaceae) from Khun Mae Kuong Forest in Chiang Mai province, Northern Thailand. Thai Forest Bull, Bot 35:38–44
    Chokchaichamnankit P, Anamthawat-Jónsson K, Chulalaksananukul W (2008) Chromosomal mapping of 18S-25S and 5S ribosomal genes on 15 species of Fagaceae from Northern Thailand. Silvae Genet 57:5–13
    Chuang JH, Li H (2004) Functional bias and spatial organization of genes in mutational hot and cold regions in the human genome. PLOS Biol 2(2):0253–0263. doi:10.​1371/​journal.​pbio.​0020029 CrossRef
    Conte L, Cotti C, Cristofolini G (2007) Molecular evidence for hybrid origin of Quercus crenata Lam. (Fagaceae) from Q. cerris L. and Q. suber L. Pl Biosyst 141:181–193CrossRef
    Coutinho JP, Carvalho A, Lima-Brito J (2014) Genetic diversity assessment and estimation of phylogenetic relationships among 26 Fagaceae species using ISSRs. Biochem Syst Ecol 54:247–256CrossRef
    Coutinho JP, Carvalho A, Lima-Brito J (2015) Taxonomic and ecological discrimination of Fagaceae species based on internal transcribed spacer polymerase chain reaction - restriction fragment length polymorphism. AoB PLANTS 7:plu079. doi:10.​1093/​aobpla/​plu079
    Cox AV, Bennett MD, Dyer TA (1992) Use of the polymerase chain reaction to detect spacer size heterogeneity in plant 5S-rRNA gene clusters and to locate such clusters in wheat (Triticum aestivum L.). Theor Appl Genet 83:684–690PubMed
    Dadejová M, Lim KY, Souckova-Skalicka K, Matyasek R, Grandbastien MA, Leitch A, Kovarik A (2007) Transcription activity of rRNA genes correlates with a tendency towards intergenomic homogenization in Nicotiana allotetraploids. New Phytol 174:658–668CrossRef PubMed
    D’Emerico S, Bianco P, Medagli P, Schivone B (1995) Karyotype analysis in Quercus spp. (Fagaceae). Silvae Genet 44:66–70
    D’Emerico S, Paciolla C, Tommasi F (2000) Contribution to the karyomorphology of some species of the genus Quercus. Silvae Genet 49:243–245
    Denk T, Grimm GW (2009) Significance of pollen characteristics for infrageneric classification and phylogeny in Quercus (Fagaceae). Int J Pl Sci 170:926–940CrossRef
    Denk T, Grimm GW (2010) The oaks of western Eurasia: traditional classifications and evidence from two nuclear markers. Taxon 59:351–366
    Denk T, Grimm G, Stögerer K, Langer M, Hemleben V (2002) The evolutionary history of Fagus in western Eurasia: evidence from genes, morphology and the fossil record. Pl Syst Evol 232:213–236CrossRef
    Denk T, Grímsson F, Zetter R (2010) Episodic migration of oaks to Iceland: evidence for a North Atlantic “Land Bridge” in the latest Miocene. Amer J Bot 97:276–287CrossRef
    Denk T, Grímsson F, Zetter R (2012) Fagaceae from the early Oligocene of Central Europe: persisting new world and emerging old world biogeographic links. Rev Palaeobot Palynol 169:7–20CrossRef
    Dover GA (1982) Molecular drive: a cohesive mode of species evolution. Nature 299:111–116CrossRef PubMed
    Dover GA (1989) Linkage disequilibrium and molecular drive in the rDNA gene family. Genetics 122:249–252PubMed PubMedCentral
    Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull Bot Soc Amer 19:11–15
    Du FG, Liu JS, Wei ZY, Jin DC (1995) Karyotype analysis of Quercus gilliana Rehd et Wils. J Yanbian Agric Coll 17:208–210
    Dzialuk A, Chybicki I, Welc M, Sliwinska E, Burczyk J (2007) Presence of triploids among oak species. Ann Bot (Oxford) 99:959–964CrossRef
    Flores-Maya S, Flores-Moreno I, Romero-Rangel S, Rojas-Zenteno C, Rubio-Licona LE (2006) Análisis cariológico de ocho especies de encinos (Quercus, Fagaceae) en México. Anales Jard Bot Madrid 63:245–250
    Ganley ARD, Kobayashi T (2007) Highly efficient concerted evolution in the ribosomal DNA repeats: total rDNA repeat variation revealed by whole-genome shotgun sequence data. Genome Res 17:184–191CrossRef PubMed PubMedCentral
    Garcia S, Kovarik A (2013) Dancing together and separate again: gymnosperms exhibit frequent changes of fundamental 5S and 35S rRNA gene (rDNA) organisation. Heredity 111:23–33CrossRef PubMed PubMedCentral
    Garcia S, Garnatje T, Hidalgo O, McArthur ED, Siljak-Yakovlev S, Vallès J (2007) Extensive ribosomal DNA (18S-5.8S-26S and 5S) colocalization in the North American endemic sagebrushes (subgenus Tridentatae, Artemisia, Asteraceae) revealed by FISH. Pl Syst Evol 267:79–92CrossRef
    Garcia S, Panero JL, Siroky J, Kovarik A (2010) Repeated reunions and splits feature the highly dynamic evolution of 5S and 35S ribosomal RNA genes (rDNA) in the Asteraceae family. BMC Pl Biol 10:176CrossRef
    Garcia S, Garnatje T, Kovarik A (2012) Plant rDNA database: ribosomal DNA loci information goes online. Chromosoma 121:389–394. Release 2.0. Available at: http://​www.​plantrdnadatabas​e.​com . Accessed 6 May 2015
    Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucl Acids Res 7:1869–1885CrossRef PubMed PubMedCentral
    Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5S rRNA genes. Nucl Acids Res 8:4851–4865CrossRef PubMed PubMedCentral
    Gömöry D, Yakovlev Y, Zhelev P, Jedináková J, Paule L (2001) Genetic differentiation of oak populations within the Quercus robur/Quercus petraea complex in Central and Eastern Europe. Heredity 86:557–563CrossRef PubMed
    Hernández-Vital CR, Alvárez-Moctezuma JG, Zavala-Chávez F, Espinosa-Robles P (2009) Estudio cariológico de Quercus laurina Humb. & Bonpl. Revista Ciencia Forestal en México 34:173–184
    Hönig K, Riefler M, Kottke I (2000) Survey of Paxillus involutus (Batsch) Fr. inoculum and fruitbodies in a nursery by IGS-RFLPs and IGS sequences. Mycorrhiza 9:315–322CrossRef
    Horjales M, Redondo N, Blanco A, Rodríguez MA (2003) Cantidades de DNA nuclear en árboles y arbustos. Nova Acta Científica Compostelana (Bioloxía) 13:23–33
    Inácio V, Rocheta M, Morais-Cecílio L (2014) Molecular organization of the 25S-18S rDNA IGS of Fagus sylvatica and Quercus suber: a comparative analysis. PLOS One 9(6):e98678. doi:10.​1371/​journal.​pone.​0098678 CrossRef PubMed PubMedCentral
    Jelesko JG, Carter K, Thompson W, Kinoshita Y, Gruissem W (2004) Meiotic recombination between paralogous RBCSB genes on sister chromatids of Arabidopsis thaliana. Genetics 166:947–957CrossRef PubMed PubMedCentral
    Jordan EG, Martini G, Bennett MD, Flavell RB (1982) Nucleolar fusion in wheat. J Cell Sci 56:485–495
    Karvonen P, Savolainen O (1993) Variation and inheritance of ribosomal DNA in Pinus sylvestris L. (Scots pine). Heredity 71:614–622CrossRef
    Kim HJ, Choi YK, Min BR (2001) Variation of the Intergenic Spacer (IGS) Region of Ribosomal DNA among Fusarium oxysporum formae specials. J Microbiol 39:265–272
    Kovarik A, Dadejová M, Yoong KL, Chase MW, Clarkson JJ, Knapp S, Leitch AR (2008) Evolution of rDNA in Nicotiana allopolyploids: a potential link between rDNA homogenization and epigenetic. Ann Bot (Oxford) 101:815–823CrossRef
    Kwei-Duan C, Shao-An F, Fang-Chi C, Mei-Chu C (2010) Chromosomal conservation and sequence diversity of ribosomal RNA genes of two distant Oryza species. Genomics 96:181–190CrossRef
    Lewontin RC (1972) The apportionment of human diversity. Evol Biol 6:281–398
    Lim KY, Skalicka K, Koukalova B, Volkov RA, Matyasek R, Hemleben V, Leitch AR, Kovarik A (2004) Dynamic changes in the distribution of a satellite homologous to intergenic 26-18S rDNA spacer in the evolution of Nicotiana. Genetics 166:1935–1946CrossRef PubMed PubMedCentral
    Lima-Brito J, Guedes-Pinto H, Heslop-Harrison JS (1998) The activity of nucleolar organizing chromosomes in multigeneric F1 hybrids involving wheat, triticale, and tritordeum. Genome 41:763–768CrossRef
    Lima-de-Faria A (1976) The chromosome field. I-Prediction of the location of ribosomal cistrons. Hereditas (Beijing) 83:1–22CrossRef
    Liu YQ, Wang LM, Li MX (1984) Karyotype analysis of eight species of Quercus in Beijing. J Beijing Forest Coll 4:9–15
    Löve A, Löve D (1982) Reports. In: A. Löve (ed.) IOPB Chromosome number reports, LXXIV, Taxon 31:120–126
    Maggini F, Baldassini S (1995) Ribosomal RNA genes in the genus Pinus. I. Caryologia 48:17–25CrossRef
    Manos PS, Doyle JJ, Nixon KC (1999) Phylogeny, biogeography, and processes of molecular differentiation in Quercus Subgenus Quercus (Fagaceae). Molec Phylogen Evol 12:333–349CrossRef
    Manos PS, Zhe-Kun Z, Cannon CH (2001) Systematics of Fagaceae: phylogenetic tests of reproductive trait evolution. Int J Pl Sci 162:1361–1379CrossRef
    Martín FG, Beato TA, Anta AS (1999) Estudio cariológico de algunas especies de Quercus (subgen. Quercus) en la Cordillera Cantábrica (España). Stud Bot Univ Salamanca 18:39–46
    Mateos M, Markow TA (2005) Ribosomal intergenic spacer (IGS) length variation across the Drosophilinae (Diptera: Drosophilidae). BMC Evol Biol 5:46. doi:10.​1186/​1471-2148-5-46 CrossRef PubMed PubMedCentral
    Mayol M, Rosselló JA (2001) Why nuclear ribosomal DNA spacers (ITS) tell different stories in Quercus. Molec Phylogen Evol 19:167–176CrossRef
    Melgarejo P, Martínez JJ, Hernández F, Martínez R, Legua P, Oncina R, Martínez-Murcia A (2009) Cultivar identification using 18S-28S rDNA intergenic spacer-RFLP in pomegranate (Punica granatum L.). Sci Hort (Amsterdam) 120:500–503CrossRef
    Muir G, Fleming CC, Schlötterer C (2001) Three divergent rDNA clusters predate the species divergence in Quercus petraea (Matt.) Liebl. and Quercus robur L. Molec Biol Evol 18:112–119CrossRef PubMed
    Mukai Y, Endo TR, Gill BS (1990) Physical mapping of the 5S rRNA multigene family in common wheat. J Heredity 81:290–295
    Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323CrossRef PubMed PubMedCentral
    Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individual. Genetics 89:583–590PubMed PubMedCentral
    Nixon KC (1993) Infrageneric classification of Quercus (Fagaceae) and typification of sectional names. Ann Forest Sci 50:25S–34SCrossRef
    Ohri D, Ahuja MR (1990) Giemsa C-banded karyotypes in Quercus L (oak). Silvae Genet 39:216–219
    Page RD (1996) TreeView: an application to display phylogenetic trees on personal computers. Computer Applic Biosci 12:357–358
    Petit RJ, Bodénès C, Ducousso A, Roussel G, Kremer A (2003) Hybridization as a mechanism of invasion in oaks. New Phytol 161:151–164CrossRef
    Poczai P, Hyvönen J (2010) Nuclear ribosomal spacer regions in plant phylogenetics: problems and prospects. Molec Biol Rep 37:1897–1912CrossRef
    Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMed PubMedCentral
    Pritchard JK, Wen X, Falush D (2010) Documentation for structure software: version 2.3. University of Chicago, Chicago. Available at: http://​pritchardlab.​stanford.​edu/​structure_​software/​release_​versions/​v2.​3.​4/​structure_​doc.​pdf . Accessed 5 March 2015
    Quirós M, Martorell P, Valderrama MJ, Querol A, Peinado JM, Silóniz MI (2006) PCR-RFLP analysis of the IGS region of rDNA: a useful tool for the practical discrimination between species of the genus Debaryomyces. Antonie van Leeuwenhoek J Microbiol Serol 90:211–219CrossRef
    Raina SN, Mukai Y (1999) Detection of a variable number of 18S–5.8S–26S and 5S ribosomal DNA loci by fluorescence in situ hybridization in diploid and tetraploid Arachis species. Genome 42:52–59CrossRef
    Reed KM, Hackett JD, Phillips RB (2000) Comparative analysis of intra-individual and inter-species DNA sequence variation in salmonid ribosomal DNA cistrons. Gene 249:115–125CrossRef PubMed
    Ribeiro T, Loureiro J, Santos C, Morais-Cecílio L (2011) Evolution of rDNA FISH patterns in the Fagaceae. Tree Genet Genomes 7:1113–1122CrossRef
    Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, Mayzel J, Chay O, Mayrose I (2014) The Chromosome Counts Database (CCDB)– a community resource of plant chromosome numbers. New Phytol 206:19–26. Available at: http://​ccdb.​tau.​ac.​il . Accessed 6 May 2015
    Roa F, Guerra M (2012) Distribution of 35S rDNA sites in chromosomes of plants: structural and evolutionary implications. BMC Evol Biol 12:225. doi:10.​1186/​1471-2148-12-225 CrossRef PubMed PubMedCentral
    Rodriguez TS, Spellenberg R (1992) Chromosome numbers for five Chihuahuan species of Quercus (Fagaceae). Phytologia 72:40–41CrossRef
    Rogers SO, Bendich AJ (1987) Ribosomal RNA genes in plants: variability in copy number and in the intergenic spacer. Pl Molec Biol 9:509–520CrossRef
    Rohlf FJ (1998) NTSYS-pc ver. 2.02. Numerical taxonomy and multivariate analysis system. Exeter Publishing, Setauket, USA
    Ryu S, Do Y, Fitch DHA, Kim W, Mishra B (2008) Dropout alignment allows homology recognition and evolutionary analysis of rDNA intergenic spacers. J Molec Evol 66:368–383CrossRef PubMed
    Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Molec Biol Evol 4(4):406–425PubMed
    Sanderson SC, Goodrich S, McArthur ED (1984) Asteraceae, Chenopodiaceae, Fagaceae. In: Löve A (ed.) IOPB Chromosome number reports, LXXXV, Taxon 33:756–760
    Sandhu PS, Mann SK (1988) SOCGI plant chromosome number reports VII. J Cytol Genet 23:219–228
    Schwarzacher T, Heslop-Harrison JS (2000) Practical in situ hybridization. BIOS Scientific, Oxford
    Si-Chong C, Cannon CH, Chai-Shian K, Jia-Jia L, Galbraith DW (2014) Genome size variation in the Fagaceae and its implications for trees. Tree Genet Genomes 10:977–988CrossRef
    Sneath PHA, Sokal RR (1973) Numerical Taxonomy. Freeman, San Francisco
    Stack S, Herikhoff L, Sherman J, Anderson L (1991) Staining plant cells with silver. I. The salt nylon technique. Biotechnic Histochem 1:69–78CrossRef
    Tabandeh A, Tabari M, Nodoushan HM, Espahbodi K, Asadicorom F (2012) Karyotypic analysis on Quercus castaneifolia of North of Iran. Iranian J Rangeland Forests Pl Breed Genet Res 20:226–239
    Taketa S, Ando H, Takeda K, von Bothmer R (2001) Physical locations of 5S and 18S–25S rDNA in Asian and American diploid Hordeum species with the I genome. Heredity 86:522–530CrossRef PubMed
    Taylor RL, Taylor S (1977) Chromosome numbers of vascular plants of British Columbia. Syesis 10:125–138
    Thiers B (2010) Index Herbariorum: a global directory of public herbaria and associated staff. New York botanical garden’s virtual herbarium. Available at: http://​sweetgum.​nybg.​org/​ . Accessed 6 May 2015
    Váchová M (1978) Reports. In: Májovský J et al. (eds.) Index of chromosome numbers of the Slovakian flora—Part 6. Acta Fac Rerum Nat Univ Comenianae Bot 26:1–42
    Valbuena-Carabaña M, González-Martínez SC, Sork VL, Collada C, Soto A, Goicoechea PG, Gil L (2005) Gene flow and hybridisation in a mixed oak forest (Quercus pyrenaica Willd. and Quercus petraea (Matts.) Liebl.) in Central Spain. Heredity 95:457–465CrossRef PubMed
    Wang LM (1986) A taxonomic study of the deciduous oaks in China by means of cluster and karyotype analysis. Bull Bot Res Harbin 6:55–69
    Yap IV, Nelson RJ (1996) Winboot: a program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA-based dendrograms. International Rice Research Institute (IRRI), Manila, Philippines
    Yeh FC, Yang RC, Boyle TBJ, Ye ZH, Mao JX (1999) POPGENE version 1.32, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton USA
    Yılmaz A, Emel U, Mehmet TB (2008) Karyological studies on four Quercus L. species in Turkey. Caryologia 61:394–401
    Yılmaz A, Emel U, Mehmet TB (2011) Cytogenetic studies on Quercus L. (Fagaceae) species belonging to Ilex and Cerris section in Turkey. Caryologia 64:297–301CrossRef
    Zapatero MAG, Elena-Roselló JÁ, Andrés FN (1988) Números cromosómicos para la flora Española. 504–515. Lagascalia 15:112–119
    Zoldos V, Pape D, Brown SC, Panaud O, iljak-Yakovlev s (1998) Genome size and base composition of seven Quercus species: inter- and intra-population variation. Genome 41:162–168CrossRef
    Zoldos V, Papes D, Cerbah M, Panaud O, Besendorfer V, Siljak-Yakovlev S (1999) Molecular-cytogenetic studies of ribosomal genes and heterochromatin reveal conserved genome organization among 11 Quercus species. Theor Appl Genet 99:969–977CrossRef
  • 作者单位:João P. Coutinho (1)
    Ana Carvalho (1)
    Antonio Martín (2)
    Teresa Ribeiro (3)
    Leonor Morais-Cecílio (3)
    José Lima-Brito (1) (4)

    1. BioISI-Biosystems and Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, C8 BDG Campo Grande, Lisbon, Portugal
    2. CSIC-Consejo Superior de Investigáciones Científicas, Cordoba, Spain
    3. Linking Landscape, Environment, Agriculture and Food (LEAF), Instituto Superior de Agronomia, University of Lisbon, Lisbon, Portugal
    4. Department of Genetics and Biotechnology, University of Tras-os-Montes and Alto Douro, 5001-801, Vila Real, Portugal
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Plant Sciences
    Plant Ecology
    Plant Anatomy and Development
    Plant Systematics/Taxonomy/ Biogeography
  • 出版者:Springer Wien
  • ISSN:1615-6110
文摘
Oaks taxonomy has been revised over the years, demanding expeditious and cost-effective tools for DNA fingerprinting and taxonomic discrimination. We focused on the characterization of the ribosomal DNA (rDNA) of 22 Quercus species, belonging to four infrageneric groups, using silver nitrate staining, fluorescence in situ hybridization (FISH) and IGS PCR–RFLP markers (produced by the digestion of the rDNA intergenic spacer, IGS). A chromosome complement of 2n = 2x = 24 was confirmed in 21 species, and ascribed to Quercus phellos. Silver nitrate staining detected one or two nucleoli per nucleus, and two nucleolar organizer regions (NORs) per prometaphase cells. FISH performed with rDNA probes revealed two 5S and four 35S rDNA loci in nine species and confirmed their location in the remaining. Since no cytogenetic polymorphisms were detected, the IGS was studied. A single amplicon with ca. 2 kb was amplified in all oaks, and digested with six restriction enzymes, that produced a total of 125 IGS PCR–RFLP fragments with 99.2 % of polymorphism. A monomorphic HaeIII fragment with 225 bp was found. Among the infrageneric groups, 11 monomorphic bands were observed and 6 were considered group-specific. Based on the pool of molecular data different genetic analyses were performed. The UPGMA dendrogram clustered most of the oaks per infrageneric group, and was corroborated by the principal coordinates analysis (PCoA). The genetic structure also matched the assumed taxonomy. Globally, IGS PCR–RFLP proved their usefulness for DNA fingerprinting, evaluation of phylogenies and genetic structure, proving to be an adequate complementary tool for rDNA based studies in genus Quercus.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700