UTOPIA NMR: activating unexploited magnetization using interleaved low-gamma detection
详细信息    查看全文
  • 作者:Aldino Viegas ; Thibault Viennet ; Tsyr-Yan Yu ; Frank Schumann…
  • 关键词:Interleaved acquisition ; Low ; γ nuclei ; UTOPIA ; NMR ; 13C ; detection
  • 刊名:Journal of Biomolecular NMR
  • 出版年:2016
  • 出版时间:January 2016
  • 年:2016
  • 卷:64
  • 期:1
  • 页码:9-15
  • 全文大小:1,149 KB
  • 参考文献:Bermel W, Bertini I, Duma L, Felli IC, Emsley L, Pierattelli R, Vasos PR (2005) Complete assignment of heteronuclear protein resonances by protonless NMR spectroscopy. Angew Chem Int Ed Engl 44:3089–3092CrossRef
    Bermel W, Bertini I, Felli I, Piccioli M, Pierattelli R (2006) 13C-detected protonless NMR spectroscopy of proteins in solution. Prog Nucl Magn Reson 48:25–45CrossRef
    Chakraborty S, Paul S, Hosur RV (2012) Simultaneous acquisition of 13Calpha-15 N and 1H–15 N–15 N sequential correlations in proteins: application of dual receivers in 3D HNN. J Biomol NMR 52:5–10CrossRef
    Delaglio F, Grzesiek S, Vuister GW, Zhu G, Pfeifer J, Bax A (1995) NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6:277–293CrossRef
    Denisov IG, Grinkova YV, Lazarides AA, Sligar SG (2004) Directed self-assembly of monodisperse phospholipid bilayer Nanodiscs with controlled size. J Am Chem Soc 126:3477–3487CrossRef
    Diercks T, Orekhov VY (2005) qTROSY—a novel scheme for recovery of the anti-TROSY magnetisation. J Biomol NMR 32:113–127CrossRef
    Eletsky A, Moreira O, Kovacs H, Pervushin K (2003) A novel strategy for the assignment of side-chain resonances in completely deuterated large proteins using 13C spectroscopy. J Biomol NMR 26:167–179CrossRef
    Etzkorn M, Raschle T, Hagn F, Gelev V, Rice AJ, Walz T, Wagner G (2013) Cell-free expressed bacteriorhodopsin in different soluble membrane mimetics: biophysical properties and NMR accessibility. Structure 21:394–401CrossRef
    Farmer BT (1991) Simultaneous [13C,15N]-HMQC, a pseudo-triple-resonance experiment. J Magn Reson (1969) 93:635–641CrossRef
    Freedberg DI, Selenko P (2014) Live cell NMR. Annu Rev Biophys 43:171–192CrossRef
    Frueh DP, Leed A, Arthanari H, Koglin A, Walsh CT, Wagner G (2009) Time-shared HSQC-NOESY for accurate distance constraints measured at high-field in (15)N-(13)C-ILV methyl labeled proteins. J Biomol NMR 45:311–318CrossRef
    Frueh DP, Goodrich AC, Mishra SH, Nichols SR (2013) NMR methods for structural studies of large monomeric and multimeric proteins. Curr Opin Struct Biol 23:734–739CrossRef
    Hagn F, Etzkorn M, Raschle T, Wagner G (2013) Optimized phospholipid bilayer nanodiscs facilitate high-resolution structure determination of membrane proteins. J Am Chem Soc 135:1919–1925CrossRef
    Hoch JC, Stern AS, Mobli M (2007) Maximum entropy reconstruction. In: eMagRes. Wiley, London
    Kay LE, Clore GM, Bax A, Gronenborn AM (1990) Four-dimensional heteronuclear triple-resonance NMR spectroscopy of interleukin-1 beta in solution. Science 249:411–414CrossRef ADS
    Kay LE, Wittekind M, Mccoy MA, Friedrichs MS, Mueller L (1992) 4D NMR triple-resonance experiments for assignment of protein backbone nuclei using shared constant-time evolution periods. J MagnReson 98:443–450ADS
    Kern T, Schanda P, Brutscher B (2008) Sensitivity-enhanced IPAP-SOFAST-HMQC for fast-pulsing 2D NMR with reduced radiofrequency load. J Magn Reson 190:333–338CrossRef ADS
    Kupce E (2013) NMR with multiple receivers. Mod NMR Methodol 335:71–96CrossRef
    Kupce E, Kay LE (2012) Parallel acquisition of multi-dimensional spectra in protein NMR. J Biomol NMR 54:1–7CrossRef
    Kupce E, Freeman R, John BK (2006) Parallel acquisition of two-dimensional NMR spectra of several nuclear species. J Am Chem Soc 128:9606–9607CrossRef
    Kupce E, Kay LE, Freeman R (2010) Detecting the “afterglow” of 13C NMR in proteins using multiple receivers. J Am Chem Soc 132:18008–18011CrossRef
    Lescop E, Schanda P, Brutscher B (2007) A set of BEST triple-resonance experiments for time-optimized protein resonance assignment. J Magn Reson 187:163–169CrossRef ADS
    Lundstrom P, Ahlner A, Blissing AT (2012) Isotope labeling methods for large systems. Adv Exp Med Biol 992:3–15CrossRef
    Moore GJ, Hrovat MI, Gonzalez RG (1991) Simultaneous multinuclear magnetic resonance imaging and spectroscopy. Magn Reson Med 19:105–112CrossRef
    Parella T, Nolis P (2010) Time-shared NMR experiments. Concept Magn Reson A 36A:1–23CrossRef
    Perez-Trujillo M, Nolis P, Bermel W, Parella T (2007) Optimizing sensitivity and resolution in time-shared NMR experiments. Magn Reson Chem 45:325–329CrossRef
    Reddy JG, Hosur RV (2013) Parallel acquisition of 3D-HA(CA)NH and 3D-HACACO spectra. J Biomol NMR 56:77–84CrossRef
    Salzmann M, Pervushin K, Wider G, Senn H, Wuthrich K (1998) TROSY in triple-resonance experiments: new perspectives for sequential NMR assignment of large proteins. Proc Natl Acad Sci USA 95:13585–13590CrossRef ADS
    Salzmann M, Ross A, Czisch M, Wider G (2000) Sensitivity gain by simultaneous acquisition of two coherence pathways: the HNCA(+) experiment. J Magn Reson 143:223–228CrossRef ADS
    Sattler M, Maurer M, Schleucher J, Griesinger C (1995) A simultaneous (15)N, (1)H- and (13)C, (1)H-HSQC with sensitivity enhancement and a heteronuclear gradient echo. J Biomol NMR 5:97–102CrossRef
    Schanda P, Brutscher B (2005) Very fast two-dimensional NMR spectroscopy for real-time investigation of dynamic events in proteins on the time scale of seconds. J Am Chem Soc 127:8014–8015CrossRef
    Schanda P, Forge V, Brutscher B (2007) Protein folding and unfolding studied at atomic resolution by fast two-dimensional NMR spectroscopy. Proc Natl Acad Sci USA 104:11257–11262CrossRef ADS
    Szyperski T, Braun D, Banecki B, Wüthrich K (1996) Useful information from axial peak magnetization in projected NMR experiments. J Am Chem Soc 118:8146–8147CrossRef
    Theillet FX, Binolfi A, Liokatis S, Verzini S, Selenko P (2011) Paramagnetic relaxation enhancement to improve sensitivity of fast NMR methods: application to intrinsically disordered proteins. J Biomol NMR 51:487–495CrossRef
    Wiedemann C, Bellstedt P, Kirschstein A, Hafner S, Herbst C, Gorlach M, Ramachandran R (2014) Sequential protein NMR assignments in the liquid state via sequential data acquisition. J Magn Reson 239:23–28CrossRef ADS
    Zhu G, Kong XM, Sze KH (1999) Gradient and sensitivity enhancement of 2D TROSY with water flip-back, 3D NOESY-TROSY and TOCSY-TROSY experiments. J Biomol NMR 13:77–81CrossRef
  • 作者单位:Aldino Viegas (1)
    Thibault Viennet (1) (2)
    Tsyr-Yan Yu (3) (6)
    Frank Schumann (5)
    Wolfgang Bermel (4)
    Gerhard Wagner (3)
    Manuel Etzkorn (1) (2)

    1. Institute of Physical Biology, Heinrich-Heine-University, Düsseldorf, Germany
    2. Instititue of Complex Systems, Forschungszentrum Jülich, Jülich, Germany
    3. Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
    6. Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
    5. Bruker BioSpin GmbH, Fällanden, Switzerland
    4. Bruker BioSpin GmbH, Rheinstetten, Germany
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Biophysics and Biomedical Physics
    Polymer Sciences
    Biochemistry
  • 出版者:Springer Netherlands
  • ISSN:1573-5001
文摘
A growing number of nuclear magnetic resonance (NMR) spectroscopic studies are impaired by the limited information content provided by the standard set of experiments conventionally recorded. This is particularly true for studies of challenging biological systems including large, unstructured, membrane-embedded and/or paramagnetic proteins. Here we introduce the concept of unified time-optimized interleaved acquisition NMR (UTOPIA-NMR) for the unified acquisition of standard high-γ (e.g. 1H) and low-γ (e.g. 13C) detected experiments using a single receiver. Our aim is to activate the high level of polarization and information content distributed on low-γ nuclei without disturbing conventional magnetization transfer pathways. We show that using UTOPIA-NMR we are able to recover nearly all of the normally non-used magnetization without disturbing the standard experiments. In other words, additional spectra, that can significantly increase the NMR insights, are obtained for free. While we anticipate a broad range of possible applications we demonstrate for the soluble protein Bcl-xL (ca. 21 kDa) and for OmpX in nanodiscs (ca. 160 kDa) that UTOPIA-NMR is particularly useful for challenging protein systems including perdeuterated (membrane) proteins.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700