A novel MVA-mediated pathway for isoprene production in engineered E. coli
详细信息    查看全文
  • 作者:Jianming Yang ; Qingjuan Nie ; Hui Liu ; Mo Xian ; Huizhou Liu
  • 关键词:Isoprene ; MVA ; mediated pathway ; OleTJE ; OhyAEM ; E. coli
  • 刊名:BMC Biotechnology
  • 出版年:2016
  • 出版时间:December 2016
  • 年:2016
  • 卷:16
  • 期:1
  • 全文大小:600 KB
  • 参考文献:1.Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science. 2007;315:801–4.CrossRef
    2.Clomburg JM, Gonzalez R. Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol. 2010;86:419–34.CrossRef
    3.Alianell GA, Derwitsch F, Wells D, Taylor T: Isoprene compositions and methods of use. In Book Isoprene compositions and methods of use (Editor ed.^eds.). City: Google Patents; 2009
    4.Lindberg P, Park S, Melis A. Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng. 2010;12:70–9.CrossRef
    5.Steinbüchel A. Production of rubber-like polymers by microorganisms. Curr Opin Microbiol. 2003;6:261–70.CrossRef
    6.Zhao Y, Yang J, Qin B, Li Y, Sun Y, Su S, et al. Biosynthesis of isoprene in Escherichia coli via methylerythritol phosphate (MEP) pathway. Appl Microbiol Biotechnol. 2011;90:1915–22.CrossRef
    7.Zurbriggen A, Kirst H, Melis A. Isoprene production via the mevalonic acid pathway in Escherichia coli (bacteria). BioEnergy Research. 2012;5:814–28.CrossRef
    8.Yang J, Zhao G, Sun Y, Zheng Y, Jiang X, Liu W, et al. Bio-isoprene production using exogenous MVA pathway and isoprene synthase in Escherichia coli. Bioresour Technol. 2012;104:642–7.CrossRef
    9.Yang J, Xian M, Su S, Zhao G, Nie Q, Jiang X, et al. Enhancing production of bio-isoprene using hybrid MVA pathway and isoprene synthase in E. coli. PLoS One. 2012;7:e33509.CrossRef
    10.Lv X, Xu H, Yu H. Significantly enhanced production of isoprene by ordered coexpression of genes dxs, dxr, and idi in Escherichia coli. Appl Microbiol Biotechnol. 2013;1–9.
    11.Martin VJ, Pitera DJ, Withers ST, Newman JD, Keasling JD. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nat Biotechnol. 2003;21:796–802.CrossRef
    12.Pitera DJ, Paddon CJ, Newman JD, Keasling JD. Balancing a heterologous mevalonate pathway for improved isoprenoid production in Escherichia coli. Metab Eng. 2007;9:193–207.CrossRef
    13.Chen H-T, Lin M-S, Hou S-Y. Multiple-copy-gene integration on chromosome of Escherichia coli for beta-galactosidase production. Korean J Chemical Engineering. 2008;25:1082–7.CrossRef
    14.Kuhlman TE, Cox EC. Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Res. 2010;38, e92.CrossRef
    15.Atsumi S, Liao JC. Directed evolution of Methanococcus jannaschii citramalate synthase for biosynthesis of 1-propanol and 1-butanol by Escherichia coli. Appl Environ Microbiol. 2008;74:7802–8.CrossRef
    16.Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008;451:86–9.CrossRef
    17.Rude MA, Baron TS, Brubaker S, Alibhai M, Del Cardayre SB, Schirmer A. Terminal olefin (1-alkene) biosynthesis by a novel p450 fatty acid decarboxylase from Jeotgalicoccus species. Appl Environ Microbiol. 2011;77:1718–27.CrossRef
    18.Kuzuyama T. Mevalonate and nonmevalonate pathways for the biosynthesis of isoprene units. Biosci Biotechnol Biochem. 2002;66:1619–27.CrossRef
    19.Zheng Y, Liu Q, Li L, Qin W, Yang J, Zhang H, et al. Metabolic engineering of Escherichia coli for high-specificity production of isoprenol and prenol as next generation of biofuels. Biotechnology for biofuels. 2013;6:1–13.CrossRef
    20.Wallen L, Benedict R, Jackson R. The microbiological production of 10-hydroxystearic acid from oleic acid. Arch Biochem Biophys. 1962;99:249–53.CrossRef
    21.Niehaus Jr WG, Schroepfer Jr G. The reversible hydration of oleic acid to 10D-hydroxystearic acid. Biochem Biophys Res Commun. 1965;21:271–5.CrossRef
    22.Bevers LE, Pinkse MW, Verhaert PD, Hagen WR. Oleate hydratase catalyzes the hydration of a nonactivated carbon-carbon bond. J Bacteriol. 2009;191:5010–2.CrossRef
    23.Marliere P: Method for producing an alkene comprising the step of converting an alcohol by an enzymatic dehydration step. In Book Method for producing an alkene comprising the step of converting an alcohol by an enzymatic dehydration step (Editor ed.^eds.). City: EP Patent 2,336,340; 2011.
    24.Bentley FK, Zurbriggen A, Melis A. Heterologous expression of the mevalonic acid pathway in cyanobacteria enhances endogenous carbon partitioning to isoprene. Mol Plant. 2014;7:71–86.CrossRef
    25.Wei J, Zhou Y, Xu T, Lu B. Rational design of catechol-2, 3-dioxygenase for improving the enzyme characteristics. Appl Biochem Biotechnol. 2010;162:116–26.CrossRef
    26.Syrén P-O, Lindgren E, Hoeffken HW, Branneby C, Maurer S, Hauer B, et al. Increased activity of enzymatic transacylation of acrylates through rational design of lipases. J Mol Catal B: Enzym. 2010;65:3–10.CrossRef
    27.George KW, Thompson MG, Kang A, Baidoo E, Wang G, Chan LJG, Adams PD, Petzold CJ, Keasling JD, Lee TS: Metabolic engineering for the high-yield production of isoprenoid-based C5 alcohols in E. coli. Sci. Rep. 2015;5:11128. DOI: 10.​1038/​srep11128 .
    28.Zhang F, Carothers JM, Keasling JD. Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol. 2012;30:354–9.CrossRef
    29.Guzman L-M, Belin D, Carson MJ, Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol. 1995;177:4121–30.
    30.Rude MABT, Brubaker S, Alibhai M, Cardayre SBD, et al. Terminal Olefin (1-Alkene) Biosynthesis by a Novel P450 Fatty Acid Decarboxylase from Jeotgalicoccus Species. Appl Environ Microbiol. 2011;77:1718–27.CrossRef
    31.Julsing MK, Rijpkema M, Woerdenbag HJ, Quax WJ, Kayser O. Functional analysis of genes involved in the biosynthesis of isoprene in Bacillus subtilis. Appl Microbiol Biotechnol. 2007;75:1377–84.CrossRef
  • 作者单位:Jianming Yang (1) (2)
    Qingjuan Nie (3)
    Hui Liu (1)
    Mo Xian (1)
    Huizhou Liu (1)

    1. CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
    2. Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
    3. Foreign Languages School, Qingdao Agricultural University, Qingdao, 266109, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Biotechnology
    Life Sciences
    Plant Breeding/Biotechnology
    Stem Cells
    Transgenics
  • 出版者:BioMed Central
  • ISSN:1472-6750
文摘
Background To deal with the increasingly severe energy crisis and environmental consequences, biofuels and biochemicals generated from renewable resources could serve as a promising alternative for replacing petroleum as a source of fuel and chemicals, among which isoprene (2-methyl-1,3-butadiene) in particular is of great significance in that it is an important platform chemical, which has been used in industrial production of synthetic rubber for tires and coatings or aviation fuel.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700