Requirements for E1A dependent transcription in the yeast Saccharomyces cerevisiae
详细信息    查看全文
  • 作者:Ahmed F Yousef (1)
    Christopher J Brandl (2)
    Joe S Mymryk (1) (3)
  • 刊名:BMC Molecular Biology
  • 出版年:2009
  • 出版时间:December 2009
  • 年:2009
  • 卷:10
  • 期:1
  • 全文大小:592KB
  • 参考文献:1. Berk AJ: Recent lessons in gene expression, cell cycle control, and cell biology from adenovirus. / Oncogene 2005, 24:7673鈥?685. CrossRef
    2. Bayley ST, Mymryk JS: Adenovirus E1A proteins and transformation (Review). / Int J Oncology 1994, 5:425鈥?44.
    3. Pelka P, Ablack JN, Fonseca GJ, Yousef AF, Mymryk JS: Intrinsic structural disorder in adenovirus E1A: a viral molecular hub linking multiple diverse processes. / J Virol 2008,82(15):7252鈥?263. CrossRef
    4. Kimelman D, Miller JS, Porter D, Roberts BE: E1a regions of the human adenoviruses and of the highly oncogenic simian adenovirus 7 are closely related. / J Virol 1985, 53:399鈥?09.
    5. Avvakumov N, Wheeler R, D'Halluin JC, Mymryk JS: Comparative sequence analysis of the largest E1A proteins of human and simian adenoviruses. / J Virol 2002, 76:7968鈥?975. CrossRef
    6. Avvakumov N, Kajon AE, Hoeben RC, Mymryk JS: Comprehensive sequence analysis of the E1A proteins of human and simian adenoviruses. / Virology 2004, 329:477鈥?92.
    7. Glenn GM, Ricciardi RP: Adenovirus 5 early region 1A host range mutants hr 3, hr4, and hr5 contain point mutations which generate single amino acid substitutions. / jv 1985, 56:66鈥?4.
    8. Lillie JW, Green M, Green MR: An adenovirus E1a protein region required for transformation and transcriptional repression. / Cell 1986, 46:1043鈥?051. CrossRef
    9. Moran E, Zerler B, Harrison TM, Mathew MB: Identification of separate domains in the adenovirus E1A gene for immortalization activity and the activation of virus early genes. / MCB 1986, 6:3470鈥?480.
    10. Moran E, Grodzicker T, Roberts RJ, Mathews MB, Zerler B: Lytic and transforming functions of individual products of the adenovirus E1A gene. / J Virol 1986, 57:765鈥?75.
    11. Moran E, Mathews MB: Multiple functional domains in the adenovirus E1A gene. / Cell 1987, 48:177鈥?78. CrossRef
    12. Strom AC, Ohlsson P, Akusjarvi G: AR1 is an integral part of the adenovirus type 2 E1A-CR3 transactivation domain. / J Virol 1998, 72:5978鈥?983.
    13. Scholer HR, Ciesiolka T, Gruss P: A nexus between Oct-4 and E1A: implications for gene regulation in embryonic stem cells. / Cell 1991, 66:291鈥?04. CrossRef
    14. Agoff SN, Wu B: CBF mediates adenovirus Ela trans-activation by interaction at the C-terminal promoter targeting domain of conserved region 3. / Oncogene 1994, 9:3707鈥?711.
    15. Liu F, Green MR: A specific member of the ATF transcription factor family can mediate transcription activation by the adenovirus E1a protein. / Cell 1990, 61:1217鈥?224. CrossRef
    16. Liu F, Green MR: Promoter targeting by adenovirus E1a through interaction with different cellular DNA-binding domains. / Nature 1994, 368:520鈥?25. CrossRef
    17. Chatton B, Bocco JL, Gaire M, Hauss C, Reimund B, Goetz J, Kedinger C: Transcriptional activation by the adenovirus larger E1a product is mediated by members of the cellular transcription factor ATF family which can directly associate with E1a. / MCB 1993, 13:561鈥?70.
    18. Lillie JW, Green MR: Transcription activation by the adenovirus E1a protein. / Nature 1989, 338:39鈥?4. CrossRef
    19. Glenn GM, Ricciardi RP: An adenovirus type 5 E1A protein with a single amino acid substitution blocks wild-type E1A transactivation. / MCB 1987, 7:1004鈥?011.
    20. Webster LC, Ricciardi RP: Trans-dominant mutants of E1A provide genetic evidence that the zinc finger of the trans-activating domain binds a transcription factor. / MCB 1991, 11:4287鈥?296.
    21. Lee WS, Kao CC, Bryant GO, Liu X, Berk AJ: Adenovirus E1A activation domain binds the basic repeat in the TATA box transcription factor. / Cell 1991, 67:365鈥?76. CrossRef
    22. Boyer TG, Martin ME, Lees E, Ricciardi RP, Berk AJ: Mammalian Srb/Mediator complex is targeted by adenovirus E1A protein [see comments]. / Nature 1999, 399:276鈥?79. CrossRef
    23. Wang G, Berk AJ: In vivo association of adenovirus large E1A protein with the human mediator complex in adenovirus-infected and -transformed cells. / J Virol 2002, 76:9186鈥?193. CrossRef
    24. Rasti M, Grand RJ, Yousef AF, Shuen M, Mymryk JS, Gallimore PH, Turnell AS: Roles for APIS and the 20S proteasome in adenovirus E1A-dependent transcription. / EMBO J 2006, 25:2710鈥?722. CrossRef
    25. Pelka P, Ablack JN, Torchia J, Turnell AS, Grand RJ, Mymryk JS: Transcriptional control by adenovirus E1A conserved region 3 via p300/CBP. / Nuc Acids Res 2009, 37:1095鈥?106. CrossRef
    26. Bondesson M, Mannervik M, Akusjarvi G, Svensson C: An adenovirus E1A transcriptional repressor domain functions as an activator when tethered to a promoter. / Nuc Acids Res 1994, 22:3053鈥?060. CrossRef
    27. Frisch SM, Mymryk JS: Adenovirus-5 e1a: paradox and paradigm. / Nat Rev Mol Cell Biol 2002, 3:441鈥?52. CrossRef
    28. Horwitz GA, Zhang K, McBrian MA, Grunstein M, Kurdistani SK, Berk AJ: Adenovirus small e1a alters global patterns of histone modification. / Science 2008, 321:1084鈥?085. CrossRef
    29. Shuen M, Avvakumov N, Walfish PG, Brandl CJ, Mymryk JS: The adenovirus E1A protein targets the SAGA but not the ADA transcriptional regulatory complex through multiple independent domains. / J Biol Chem 2002, 277:30844鈥?0851. CrossRef
    30. Miller ME, Cairns BR, Levinson RS, Yamamoto KR, Engel DA, Smith MM: Adenovirus E1A specifically blocks SWI/SNF-dependent transcriptional activation. / MCB 1996, 16:5737鈥?743.
    31. Zhang Z, Smith MM, Mymryk JS: Interaction of the E1A oncoprotein with Yak1p, a novel regulator of yeast pseudohyphal differentiation, and related mammalian kinases. / Mol Biol Cell 2001, 12:699鈥?10.
    32. Zieler HA, Walberg M, Berg P: Suppression of mutations in two Saccharomyces cerevisiae genes by the adenovirus E1A protein. / MCB 1995, 15:3227鈥?237.
    33. Sang N, Severino A, Russo P, Baldi A, Giordano A, Mileo AM, Paggi MG, De Luca A: RACK1 interacts with E1A and rescues E1A-induced yeast growth inhibition and mammalian cell apoptosis. / J Biol Chem 2001, 276:27026鈥?7033. CrossRef
    34. Mohibullah N, Hahn S: Site-specific cross-linking of TBP in vivo and in vitro reveals a direct functional interaction with the SAGA subunit Spt3. / GD 2008, 22:2994鈥?006. CrossRef
    35. Bhaumik SR, Green MR: Differential requirement of SAGA components for recruitment of TATA-box-binding protein to promoters in vivo. / MCB 2002, 22:7365鈥?371. CrossRef
    36. Pray-Grant MG, Schieltz D, McMahon SJ, Wood JM, Kennedy EL, Cook RG, Workman JL, Yates JR III, Grant PA: The novel SLIK histone acetyltransferase complex functions in the yeast retrograde response pathway. / Mol Cell Biol 2002, 22:8774鈥?786. CrossRef
    37. Kulesza CA, Van Buskirk HA, Cole MD, Reese JC, Smith MM, Engel DA: Adenovirus E1A requires the yeast SAGA histone acetyltransferase complex and associates with SAGA components Gcn5 and Tra1. / Oncogene 2002, 21:1411鈥?422. CrossRef
    38. Reid JL, Bannister AJ, Zegerman P, Martinez-Balbas MA, Kouzarides T: E1A directly binds and regulates the P/CAF acetyltransferase. / EMBO J 1998, 17:4469鈥?477. CrossRef
    39. Lang SE, Hearing P: The adenovirus E1A oncoprotein recruits the cellular TRRAP/GCN5 histone acetyltransferase complex. / Oncogene 2003, 22:2836鈥?841. CrossRef
    40. Ferrari R, Pellegrini M, Horwitz GA, Xie W, Berk AJ, Kurdistani SK: Epigenetic reprogramming by adenovirus e1a. / Science 2008, 321:1086鈥?088. CrossRef
    41. Biddick R, Young ET: Yeast mediator and its role in transcriptional regulation. / C R Biol 2005, 328:773鈥?82. CrossRef
    42. Boube M, Joulia L, Cribbs DL, Bourbon HM: Evidence for a mediator of RNA polymerase II transcriptional regulation conserved from yeast to man. / Cell 2002, 110:143鈥?51. CrossRef
    43. Wang W: The SWI/SNF family of ATP-dependent chromatin remodelers: similar mechanisms for diverse functions. / Curr Top Microbiol Immunol 2003, 274:143鈥?69.
    44. Chandy M, Gutierrez JL, Prochasson P, Workman JL: SWI/SNF displaces SAGA-acetylated nucleosomes. / Eukaryot Cell 2006, 5:1738鈥?747. CrossRef
    45. Fuchs M, Gerber J, Drapkin R, Sif S, Ikura T, Ogryzko V, Lane WS, Nakatani Y, Livingston DM: The p400 complex is an essential E1A transformation target. / Cell 2001, 106:297鈥?07. CrossRef
    46. Flinterman MB, Mymryk JS, Klanrit P, Yousef AF, Lowe SW, Caldas C, Gaken J, Farzaneh F, Tavassoli M: p400 function is required for the adenovirus E1A-mediated suppression of EGFR and tumour cell killing. / Oncogene 2007, 26:6863鈥?874. CrossRef
    47. Kim J, Hake SB, Roeder RG: The human homolog of yeast BRE1 functions as a transcriptional coactivator through direct activator interactions. / Mol Cell 2005, 20:759鈥?70. CrossRef
    48. Zhu B, Zheng Y, Pham AD, Mandal SS, Erdjument-Bromage H, Tempst P, Reinberg D: Monoubiquitination of human histone H2B: the factors involved and their roles in HOX gene regulation. / Mol Cell 2005, 20:601鈥?11. CrossRef
    49. Wood A, Schneider J, Dover J, Johnston M, Shilatifard A: The Bur1/Bur2 complex is required for histone H2B monoubiquitination by Rad6/Bre1 and histone methylation by COMPASS. / Mol Cell 2005, 20:589鈥?99. CrossRef
    50. Henry KW, Wyce A, Lo WS, Duggan LJ, Emre NC, Kao CF, Pillus L, Shilatifard A, Osley MA, Berger SL: Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8. / GD 2003, 17:2648鈥?663. CrossRef
    51. Shahbazian MD, Zhang K, Grunstein M: Histone H2B ubiquitylation controls processive methylation but not monomethylation by Dot1 and Set1. / Mol Cell 2005, 19:271鈥?77. CrossRef
    52. Schneider J, Wood A, Lee JS, Schuster R, Dueker J, Maguire C, Swanson SK, Florens L, Washburn MP, Shilatifard A: Molecular regulation of histone H3 trimethylation by COMPASS and the regulation of gene expression. / Mol Cell 2005, 19:849鈥?56. CrossRef
    53. Santos-Rosa H, Schneider R, Bernstein BE, Karabetsou N, Morillon A, Weise C, Schreiber SL, Mellor J, Kouzarides T: Methylation of histone H3 K4 mediates association of the Isw1p ATPase with chromatin. / Mol Cell 2003, 12:1325鈥?332. CrossRef
    54. Vary JC Jr, Gangaraju VK, Qin J, Landel CC, Kooperberg C, Bartholomew B, Tsukiyama T: Yeast Isw1p forms two separable complexes in vivo. / MCB 2003, 23:80鈥?1. CrossRef
    55. Hartzog GA, Wada T, Handa H, Winston F: Evidence that Spt4, Spt5, and Spt6 control transcription elongation by RNA polymerase II in Saccharomyces cerevisiae. / GD 1998, 12:357鈥?69. CrossRef
    56. Wada T, Takagi T, Yamaguchi Y, Ferdous A, Imai T, Hirose S, Sugimoto S, Yano K, Hartzog GA, Winston F, / et al.: DSIF, a novel transcription elongation factor that regulates RNA polymerase II processivity, is composed of human Spt4 and Spt5 homologs. / GD 1998, 12:343鈥?56. CrossRef
    57. Adams A, Gottschling DE, Kaiser CA, Stearns T: / Methods in yeast genetics, 1997 Edition edn Plainview N.Y.: Cold Spring Harbor Laboratory Press 1998.
    58. Gietz RD, Schiestl RH, Willems AR, Woods RA: Studies on the transformation of intact yeast cells by the LiAc/SS- DNA/PEG procedure. / Yeast 1995, 11:355鈥?60. CrossRef
  • 作者单位:Ahmed F Yousef (1)
    Christopher J Brandl (2)
    Joe S Mymryk (1) (3)

    1. Department of Microbiology & Immunology, University of Western Ontario, London, Ontario, Canada
    2. Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
    3. Department of Oncology, University of Western Ontario, London, Ontario, Canada
文摘
Background The human adenovirus type 5 early region 1A (E1A) gene encodes proteins that are potent regulators of transcription. E1A does not bind DNA directly, but is recruited to target promoters by the interaction with sequence specific DNA binding proteins. In mammalian systems, E1A has been shown to contain two regions that can independently induce transcription when fused to a heterologous DNA binding domain. When expressed in Saccharomyces cerevisiae, each of these regions of E1A also acts as a strong transcriptional activator. This allows yeast to be used as a model system to study mechanisms by which E1A stimulates transcription. Results Using 81 mutant yeast strains, we have evaluated the effect of deleting components of the ADA, COMPASS, CSR, INO80, ISW1, NuA3, NuA4, Mediator, PAF, RSC, SAGA, SAS, SLIK, SWI/SNF and SWR1 transcriptional regulatory complexes on E1A dependent transcription. In addition, we examined the role of histone H2B ubiquitylation by Rad6/Bre1 on transcriptional activation. Conclusion Our analysis indicates that the two activation domains of E1A function via distinct mechanisms, identify new factors regulating E1A dependent transcription and suggest that yeast can serve as a valid model system for at least some aspects of E1A function.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700