Plasmodium falciparum encodes a conserved active inhibitor-2 for Protein Phosphatase type 1: perspectives for novel anti-plasmodial therapy
详细信息    查看全文
  • 作者:Aline Fréville (1)
    Katia Cailliau-Maggio (2)
    Christine Pierrot (1)
    Géraldine Tellier (1)
    Hadidjatou Kalamou (1)
    Sophia Lafitte (1)
    Alain Martoriati (2)
    Raymond J Pierce (1)
    Jean-Fran?ois Bodart (2)
    Jamal Khalife (1)
  • 关键词:PP1 ; Plasmodium ; RVXF motifs ; Inhibitor ; 2 ; G2/M cell cycle
  • 刊名:BMC Biology
  • 出版年:2013
  • 出版时间:December 2013
  • 年:2013
  • 卷:11
  • 期:1
  • 全文大小:1177KB
  • 参考文献:1. Yokoyama D, Saito-Ito A, Asao N, Tanabe K, Yamamoto M, Matsumura T: Modulation of the growth of Plasmodium falciparum in vitro by protein serine/threonine phosphatase inhibitors. / Biochem Biophys Res Commun 1998, 247:18-3. CrossRef
    2. Ward GE, Fujioka H, Aikawa M, Miller LH: Staurosporine inhibits invasion of erythrocytes by malarial merozoites. / Exp Parasitol 1994, 79:480-87. CrossRef
    3. Dluzewski AR, Garcia CR: Inhibition of invasion and intraerythrocytic development of Plasmodium falciparum by kinase inhibitors. / Experientia 1996, 52:621-23. CrossRef
    4. Solyakov L, Halbert J, Alam MM, Semblat JP, Dorin-Semblat D, Reininger L, Bottrill AR, Mistry S, Abdi A, Fennell C, / et al.: Global kinomic and phospho-proteomic analyses of the human malaria parasite Plasmodium falciparum. / Nat Commun 2011, 2:565. CrossRef
    5. Doerig C, Tobin AB: Parasite protein kinases: at home and abroad. / Cell Host Microbe 2010, 8:305-07. CrossRef
    6. Doerig C, Billker O, Haystead T, Sharma P, Tobin AB, Waters NC: Protein kinases of malaria parasites: an update. / Trends Parasitol 2008, 24:570-77. CrossRef
    7. Ward P, Equinet L, Packer J, Doerig C: Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. / BMC Genomics 2004, 5:79. CrossRef
    8. Anamika , Srinivasan N, Krupa A: A genomic perspective of protein kinases in Plasmodium falciparum. / Proteins 2005, 58:180-89. CrossRef
    9. Wilkes JM, Doerig C: The protein-phosphatome of the human malaria parasite Plasmodium falciparum. / BMC Genomics 2008, 9:412. CrossRef
    10. Treeck M, Sanders JL, Elias JE, Boothroyd JC: The phosphoproteomes of Plasmodium falciparum and Toxoplasma gondii reveal unusual adaptations within and beyond the parasites-boundaries. / Cell Host Microbe 2011, 10:410-19. CrossRef
    11. Lasonder E, Green JL, Camarda G, Talabani H, Holder AA, Langsley G, Alano P: The Plasmodium falciparum schizont phosphoproteome reveals extensive phosphatidylinositol and cAMP-protein kinase A signaling. / J Proteome Res 2012, 11:5323-337. CrossRef
    12. Lasonder E, Treeck M, Alam M, Tobin AB: Insights into the Plasmodium falciparum schizont phospho-proteome. / Microbes and infection/Institut Pasteur 2012, 14:811-19. CrossRef
    13. Tewari R, Straschil U, Bateman A, Bohme U, Cherevach I, Gong P, Pain A, Billker O: The systematic functional analysis of Plasmodium protein kinases identifies essential regulators of mosquito transmission. / Cell Host Microbe 2010, 8:377-87. CrossRef
    14. Gamo FJ, Sanz LM, Vidal J, de Cozar C, Alvarez E, Lavandera JL, Vanderwall DE, Green DV, Kumar V, Hasan S, / et al.: Thousands of chemical starting points for antimalarial lead identification. / Nature 2010, 465:305-10. CrossRef
    15. Doerig C, Abdi A, Bland N, Eschenlauer S, Dorin-Semblat D, Fennell C, Halbert J, Holland Z, Nivez MP, Semblat JP, / et al.: Malaria: targeting parasite and host cell kinomes. / Biochim Biophys Acta 1804, 2010:604-12.
    16. Doerig C: Protein kinases as targets for anti-parasitic chemotherapy. / Biochim Biophys Acta 2004, 1697:155-68. CrossRef
    17. Bhattacharyya MK, Hong Z, Kongkasuriyachai D, Kumar N: Plasmodium falciparum protein phosphatase type 1 functionally complements a glc7 mutant in Saccharomyces cerevisiae. / Int J Parasitol 2002, 32:739-47. CrossRef
    18. Cayla X, Garcia A, Baumgartner M, Ozon R, Langsley G: A Theileria parva type 1 protein phosphatase activity. / Mol Biochem Parasitol 2000, 110:161-66. CrossRef
    19. Blisnick T, Vincensini L, Fall G, Braun-Breton C: Protein phosphatase 1, a Plasmodium falciparum essential enzyme, is exported to the host cell and implicated in the release of infectious merozoites. / Cell Microbiol 2006, 8:591-01. CrossRef
    20. Kumar R, Adams B, Oldenburg A, Musiyenko A, Barik S: Characterisation and expression of a PP1 serine/threonine protein phosphatase (PfPP1) from the malaria parasite, Plasmodium falciparum: demonstration of its essential role using RNA interference. / Malar J 2002, 1:5. CrossRef
    21. Ceulemans H, Stalmans W, Bollen M: Regulator-driven functional diversification of protein phosphatase-1 in eukaryotic evolution. / Bioessays 2002, 24:371-81. CrossRef
    22. Ceulemans H, Bollen M: Functional diversity of protein phosphatase-1, a cellular economizer and reset button. / Physiol Rev 2004, 84:1-9. CrossRef
    23. Cohen PT: Protein phosphatase 1–targeted in many directions. / J Cell Sci 2002, 115:241-56.
    24. Fardilha M, Esteves SL, Korrodi-Gregorio L, Silva OA d C e, Silva FF d C e: The physiological relevance of protein phosphatase 1 and its interacting proteins to health and disease. / Curr Med Chem 2010, 17:3996-017. CrossRef
    25. Hendrickx A, Beullens M, Ceulemans H, Den Abt T, Van Eynde A, Nicolaescu E, Lesage B, Bollen M: Docking motif-guided mapping of the interactome of protein phosphatase-1. / Chem Biol 2009, 16:365-71. CrossRef
    26. Bollen M, Peti W, Ragusa MJ, Beullens M: The extended PP1 toolkit: designed to create specificity. / Trends Biochem Sci 2010, 35:450-58. CrossRef
    27. Wakula P, Beullens M, Ceulemans H, Stalmans W, Bollen M: Degeneracy and function of the ubiquitous RVXF motif that mediates binding to protein phosphatase-1. / J Biol Chem 2003, 278:18817-8823. CrossRef
    28. Daher W, Browaeys E, Pierrot C, Jouin H, Dive D, Meurice E, Dissous C, Capron M, Tomavo S, Doerig C, / et al.: Regulation of protein phosphatase type 1 and cell cycle progression by PfLRR1, a novel leucine-rich repeat protein of the human malaria parasite Plasmodium falciparum. / Mol Microbiol 2006, 60:578-90. CrossRef
    29. Freville A, Landrieu I, Garcia-Gimeno MA, Vicogne J, Montbarbon M, Bertin B, Verger A, Kalamou H, Sanz P, Werkmeister E, / et al.: Plasmodium falciparum inhibitor-3 homolog increases protein phosphatase type 1 activity and is essential for parasitic survival. / J Biol Chem 2012, 287:1306-321. CrossRef
    30. Huang FL, Glinsmann WH: Separation and characterization of two phosphorylase phosphatase inhibitors from rabbit skeletal muscle. / European journal of biochemistry /FEBS 1976, 70:419-26. CrossRef
    31. Holmes CF, Campbell DG, Caudwell FB, Aitken A, Cohen P: The protein phosphatases involved in cellular regulation. Primary structure of inhibitor-2 from rabbit skeletal muscle. / European journal of biochemistry/FEBS 1986, 155:173-82. CrossRef
    32. Li M, Satinover DL, Brautigan DL: Phosphorylation and functions of inhibitor-2 family of proteins. / Biochemistry 2007, 46:2380-389. CrossRef
    33. Yang J, Hurley TD, DePaoli-Roach AA: Interaction of inhibitor-2 with the catalytic subunit of type 1 protein phosphatase. Identification of a sequence analogous to the consensus type 1 protein phosphatase-binding motif. / J Biol Chem 2000, 275:22635-2644. CrossRef
    34. Huang HB, Horiuchi A, Watanabe T, Shih SR, Tsay HJ, Li HC, Greengard P, Nairn AC: Characterization of the inhibition of protein phosphatase-1 by DARPP-32 and inhibitor-2. / J Biol Chem 1999, 274:7870-878. CrossRef
    35. Park IK, DePaoli-Roach AA: Domains of phosphatase inhibitor-2 involved in the control of the ATP-Mg-dependent protein phosphatase. / J Biol Chem 1994, 269:28919-8928.
    36. Helps NR, Vergidou C, Gaskell T, Cohen PT: Characterisation of a novel Drosophila melanogaster testis specific PP1 inhibitor related to mammalian inhibitor-2: identification of the site of interaction with PP1. / FEBS Lett 1998, 438:131-36. CrossRef
    37. Hurley TD, Yang J, Zhang L, Goodwin KD, Zou Q, Cortese M, Dunker AK, DePaoli-Roach AA: Structural basis for regulation of protein phosphatase 1 by inhibitor-2. / J Biol Chem 2007, 282:28874-8883. CrossRef
    38. Tung HY, Wang W, Chan CS: Regulation of chromosome segregation by Glc8p, a structural homolog of mammalian inhibitor 2 that functions as both an activator and an inhibitor of yeast protein phosphatase 1. / Mol Cell Biol 1995, 15:6064-074.
    39. Wang W, Stukenberg PT, Brautigan DL: Phosphatase inhibitor-2 balances protein phosphatase 1 and aurora B kinase for chromosome segregation and cytokinesis in human retinal epithelial cells. / Mol Biol Cell 2008, 19:4852-862. CrossRef
    40. Wang W, Cronmiller C, Brautigan DL: Maternal phosphatase inhibitor-2 is required for proper chromosome segregation and mitotic synchrony during Drosophila embryogenesis. / Genetics 2008, 179:1823-833. CrossRef
    41. Plasmodium Genomics Resource http://plasmodb.org/plasmo/showRecord.do
    42. PSORT WWW server http://psort.hgc.jp
    43. The PSIPRED Protein Sequence Analysis Work Bank http://bioinf.cs.ucl.ac.uk/psipred/
    44. Jones DT: Protein secondary structure prediction based on position-specific scoring matrices. / J Mol Biol 1999, 292:195-02. CrossRef
    45. Daher W, Oria G, Fauquenoy S, Cailliau K, Browaeys E, Tomavo S, Khalife J: A Toxoplasma gondii leucine-rich repeat protein binds phosphatase type 1 protein and negatively regulates its activity. / Eukaryot Cell 2007, 6:1606-617. CrossRef
    46. Daher W, Cailliau K, Takeda K, Pierrot C, Khayath N, Dissous C, Capron M, Yanagida M, Browaeys E, Khalife J: Characterization of Schistosoma mansoni Sds homologue, a leucine-rich repeat protein that interacts with protein phosphatase type 1 and interrupts a G2/M cell-cycle checkpoint. / Biochem J 2006, 395:433-41. CrossRef
    47. Kuhn Y, Sanchez CP, Ayoub D, Saridaki T, van Dorsselaer A, Lanzer M: Trafficking of the phosphoprotein PfCRT to the digestive vacuolar membrane in Plasmodium falciparum. / Traffic 2010, 11:236-49. CrossRef
    48. Kakinoki Y, Somers J, Brautigan DL: Multisite phosphorylation and the nuclear localization of phosphatase inhibitor 2-green fluorescent protein fusion protein during S phase of the cell growth cycle. / J Biol Chem 1997, 272:32308-2314. CrossRef
    49. Leach C, Eto M, Brautigan DL: Domains of type 1 protein phosphatase inhibitor-2 required for nuclear and cytoplasmic localization in response to cell-cell contact. / J Cell Sci 2002, 115:3739-745. CrossRef
    50. Templeton GW, Nimick M, Morrice N, Campbell D, Goudreault M, Gingras AC, Takemiya A, Shimazaki K, Moorhead GB: Identification and characterization of AtI-2, an Arabidopsis homologue of an ancient protein phosphatase 1 (PP1) regulatory subunit. / Biochem J 2011, 435:73-3. CrossRef
    51. Huchon D, Ozon R, Demaille JG: Protein phosphatase-1 is involved in Xenopus oocyte maturation. / Nature 1981, 294:358-59. CrossRef
    52. Guergnon J, Dessauge F, Dominguez V, Viallet J, Bonnefoy S, Yuste VJ, Mercereau-Puijalon O, Cayla X, Rebollo A, Susin SA, / et al.: Use of penetrating peptides interacting with PP1/PP2A proteins as a general approach for a drug phosphatase technology. / Mol Pharmacol 2006, 69:1115-124. CrossRef
    53. Helps NR, Cohen PT: Drosophila melanogaster protein phosphatase inhibitor-2: identification of a site important for PP1 inhibition. / FEBS Lett 1999, 463:72-6. CrossRef
    54. Lesage B, Qian J, Bollen M: Spindle checkpoint silencing: PP1 tips the balance. / Curr Biol 2011, 21:R898-R903. CrossRef
    55. Pfeuty B, Bodart JF, Blossey R, Lefranc M: A dynamical model of oocyte maturation unveils precisely orchestrated meiotic decisions. / PLoS Comput Biol 2012, 8:e1002329. CrossRef
    56. Bodart JF, Gutierrez DV, Nebreda AR, Buckner BD, Resau JR, Duesbery NS: Characterization of MPF and MAPK activities during meiotic maturation of Xenopus tropicalis oocytes. / Dev Biol 2002, 245:348-61. CrossRef
    57. Satinover DL, Brautigan DL, Stukenberg PT: Aurora-A kinase and inhibitor-2 regulate the cyclin threshold for mitotic entry in Xenopus early embryonic cell cycles. / Cell Cycle 2006, 5:2268-274. CrossRef
    58. Eto M, Elliott E, Prickett TD, Brautigan DL: Inhibitor-2 regulates protein phosphatase-1 complexed with NimA-related kinase to induce centrosome separation. / J Biol Chem 2002, 277:44013-4020. CrossRef
    59. Satinover DL, Leach CA, Stukenberg PT, Brautigan DL: Activation of Aurora-A kinase by protein phosphatase inhibitor-2, a bifunctional signaling protein. / Proc Natl Acad Sci USA 2004, 101:8625-630. CrossRef
    60. Lye YM, Chan M, Sim TS: Pfnek3: an atypical activator of a MAP kinase in Plasmodium falciparum. / FEBS Lett 2006, 580:6083-092. CrossRef
    61. Dorin D, Le Roch K, Sallicandro P, Alano P, Parzy D, Poullet P, Meijer L, Doerig C: Pfnek-1, a NIMA-related kinase from the human malaria parasite Plasmodium falciparum Biochemical properties and possible involvement in MAPK regulation. / European journal of biochemistry/FEBS 2001, 268:2600-608. CrossRef
    62. Reininger L, Billker O, Tewari R, Mukhopadhyay A, Fennell C, Dorin-Semblat D, Doerig C, Goldring D, Harmse L, Ranford-Cartwright L, / et al.: A NIMA-related protein kinase is essential for completion of the sexual cycle of malaria parasites. / J Biol Chem 2005, 280:31957-1964. CrossRef
    63. Reininger L, Tewari R, Fennell C, Holland Z, Goldring D, Ranford-Cartwright L, Billker O, Doerig C: An essential role for the Plasmodium Nek-2 Nima-related protein kinase in the sexual development of malaria parasites. / J Biol Chem 2009, 284:20858-0868. CrossRef
    64. Carvalho TG, Doerig C, Reininger L: Nima- and Aurora-related kinases of malaria parasites. / Biochim Biophys Acta 1834, 2013:1336-345.
    65. Gerace L: Nuclear export signals and the fast track to the cytoplasm. / Cell 1995, 82:341-44. CrossRef
    66. Quimby BB, Corbett AH: Nuclear transport mechanisms. / Cell Mol Life Sci 2001, 58:1766-773. CrossRef
    67. Tsaytler P, Harding HP, Ron D, Bertolotti A: Selective inhibition of a regulatory subunit of protein phosphatase 1 restores proteostasis. / Science 2011, 332:91-4. CrossRef
    68. National Center for Biotechnology Information http://www.ncbi.nlm.nih.gov
    69. Toxoplasma Genomics Resource http://toxodb.org/toxo/
    70. Schistosoma Genomics Resource http://Schistodb.org/schisto/
    71. Xenopus laevis and Xenopus tropicalis Biology and Genomics Resource http://www.xenbase.org/common/
    72. Ortholog Groups of Protein Sequences http://www.orthomcl.org/cgi-bin/OrthoMclWeb.cgi
    73. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. / Mol Biol Evol 2011, 28:2731-739. CrossRef
    74. Trager W, Jensen JB: Human malaria parasites in continuous culture. / Science 1976, 193:673-75. CrossRef
    75. Vernes A, Haynes JD, Tapchaisri P, Williams JL, Dutoit E, Diggs CL: Plasmodium falciparum strain-specific human antibody inhibits merozoite invasion of erythrocytes. / Am J Trop Med Hyg 1984, 33:197-03.
    76. Umlas J, Fallon JN: New thick-film technique for malaria diagnosis. / Use of saponin stromatolytic solution for lysis. Am J Trop Med Hyg 1971, 20:527-29.
    77. Ginsburg H, Landau I, Baccam D, Mazier D: Fractionation of mouse malarious blood according to parasite developmental stage, using a Percoll-sorbitol gradient. / Ann Parasitol Hum Comp 1987, 62:418-25.
    78. Sidhu AB, Valderramos SG, Fidock DA: Pfmdr1 mutations contribute to quinine resistance and enhance mefloquine and artemisinin sensitivity in Plasmodium falciparum. / Mol Microbiol 2005, 57:913-26. CrossRef
    79. Vicogne J, Cailliau K, Tulasne D, Browaeys E, Yan YT, Fafeur V, Vilain JP, Legrand D, Trolet J, Dissous C: Conservation of epidermal growth factor receptor function in the human parasitic helminth Schistosoma mansoni. / J Biol Chem 2004, 279:37407-7414. CrossRef
    80. Daher W, Pierrot C, Kalamou H, Pinder JC, Margos G, Dive D, Franke-Fayard B, Janse CJ, Khalife J: Plasmodium falciparum dynein light chain 1 interacts with actin/myosin during blood stage development. / J Biol Chem 2010, 285:20180-0191. CrossRef
    81. Kelly JX, Smilkstein MJ, Brun R, Wittlin S, Cooper RA, Lane KD, Janowsky A, Johnson RA, Dodean RA, Winter R, / et al.: Discovery of dual function acridones as a new antimalarial chemotype. / Nature 2009, 459:270-73. CrossRef
    82. Izumiyama S, Omura M, Takasaki T, Ohmae H, Asahi H: Plasmodium falciparum: development and validation of a measure of intraerythrocytic growth using SYBR Green I in a flow cytometer. / Exp Parasitol 2009, 121:144-50. CrossRef
    83. IC estimator 1.2 http://www.antimalarial-icestimator.net
  • 作者单位:Aline Fréville (1)
    Katia Cailliau-Maggio (2)
    Christine Pierrot (1)
    Géraldine Tellier (1)
    Hadidjatou Kalamou (1)
    Sophia Lafitte (1)
    Alain Martoriati (2)
    Raymond J Pierce (1)
    Jean-Fran?ois Bodart (2)
    Jamal Khalife (1)

    1. Center for Infection and Immunity of Lille, Inserm U1019-CNRS UMR 8204, University of Lille Nord de France, Institut Pasteur de Lille, 1 Rue du Professeur Calmette, 59019, Lille, Cedex, France
    2. EA4479, IFR147, Laboratoire de Régulation des Signaux de Division, SN3, Université des Sciences et Technologies de Lille, 59655, Villeneuve d’Ascq, France
文摘
Background It is clear that the coordinated and reciprocal actions of kinases and phosphatases are fundamental in the regulation of development and growth of the malaria parasite. Protein Phosphatase type 1 is a key enzyme playing diverse and essential roles in cell survival. Its dephosphorylation activity/specificity is governed by the interaction of its catalytic subunit (PP1c) with regulatory proteins. Among these, inhibitor-2 (I2) is one of the most evolutionarily ancient PP1 regulators. In vivo studies in various organisms revealed a defect in chromosome segregation and cell cycle progression when the function of I2 is blocked. Results In this report, we present evidence that Plasmodium falciparum, the causative agent of the most deadly form of malaria, expresses a structural homolog of mammalian I2, named PfI2. Biochemical, in vitro and in vivo studies revealed that PfI2 binds PP1 and inhibits its activity. We further showed that the motifs 12KTISW16 and 102HYNE105 are critical for PfI2 inhibitory activity. Functional studies using the Xenopus oocyte model revealed that PfI2 is able to overcome the G2/M cell cycle checkpoint by inducing germinal vesicle breakdown. Genetic manipulations in P. falciparum suggest an essential role of PfI2 as no viable mutants with a disrupted PfI2 gene were detectable. Additionally, peptides derived from PfI2 and competing with RVxF binding sites in PP1 exhibit anti-plasmodial activity against blood stage parasites in vitro. Conclusions Taken together, our data suggest that the PfI2 protein could play a role in the regulation of the P. falciparum cell cycle through its PfPP1 phosphatase regulatory activity. Structure-activity studies of this regulator led to the identification of peptides with anti-plasmodial activity against blood stage parasites in vitro suggesting that PP1c-regulator interactions could be a novel means to control malaria.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700