Galleria mellonella infected with Bacillus thuringiensis involves Hsp90
详细信息    查看全文
  • 作者:Iwona Wojda (1162)
    Patryk Kowalski (1162)
  • 关键词:Bacillus thuringiensis ; Galleria mellonella ; Hsp90 ; Insect immune response
  • 刊名:Central European Journal of Biology
  • 出版年:2013
  • 出版时间:June 2013
  • 年:2013
  • 卷:8
  • 期:6
  • 页码:561-569
  • 全文大小:605KB
  • 参考文献:1. Aggarwal K., Silverman N., Positive and negative regulation of the Drosophila immune response, Bioch. Mol. Biol. Rep., 2008, 41, 267鈥?77
    2. Leulier F., Parquet C., Pili-Floury S., Ryu J.H., Caroff M., Lee W.J., et al., The Drosophila immune system detects both Gram-positive and Gramnegative bacteria through specific peptidoglycan recognition, Nat. Immunol., 2003, 4, 478鈥?84 CrossRef
    3. Pal S., Wu L.P., Lessons from the fly: pattern recognition in Drosophila melanogaster, Adv. Exp. Med. Biol., 2009, 653, 162鈥?74 CrossRef
    4. Halwani A.E., Dunphy G.B., Apolipophorin-III in Galleria mellonella potentiates hemolymph lytic activity, Dev.Com. Immunol., 1999, 23, 563鈥?70 CrossRef
    5. Seitz V., Clermont A., Wedde M., Hummel M., Vilcinskas A., Schlatterer K., et al., Identification of immunorelevant genes from greater wax moth (Galleria mellonella) by substractive hybridization approach, Dev. Comp. Immunol., 2003, 27, 207鈥?15 CrossRef
    6. Irving P., Troxler L., Hetru C., Is innate enough? The innate immune response in Drosophila, Comp. Rend. Biol., 2004, 327, 557鈥?70 CrossRef
    7. Park S.Y., Kim C.H., Jeong W.H., Lee J.H., Seo S.J., Han Y.S., et al., Effects of two hemolymph proteins on humoral defense reactions in the wax moth, Galleria mellonella, Dev. Comp. Immunol., 2005, 29, 43鈥?1 CrossRef
    8. Cytry艅ska M., Mak P., Zdybicka-Barabas A., Suder P., Jakubowicz T., Purification and characterization of eight peptides from Galleria mellonella immune hemolymph, Peptides, 2007, 28, 533鈥?46 CrossRef
    9. Brown S.E., Howard A., Kasprzak A.B., Gordon K.B., East P.D., A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella, Insect Biochem. Mol. Biol., 2009, 39, 792鈥?00 CrossRef
    10. Sribnaya O.S., Purygin P.P., Klenova N.A., Buryak A.K., Litvinova E.G., Study of peptide fractions from hemolymph of Galleria mellonella, Biochemistry (Mosc)., 2010, 75, 1165鈥?172 CrossRef
    11. Vogel H., Altincicek B., Gl枚ckner G., Vilcinskas A., A comprehensive transcriptome and immune-gene repertoire of the lepidopteran model host Galleria mellonella, BMC Genomics., 2011, 12, 308 CrossRef
    12. B眉y眉kg眉zel E., Tunaz H., Stanley D., B眉y眉kg眉zel K., Eicosanoids mediate Galleria mellonella cellular immune response to viral infection, J. Insect Physiol., 2007, 53, 99鈥?05 CrossRef
    13. Dubovskiy I.M., Krukova N.A., Glupov V.V., Phagocytic activity and encapsulation rate of Galleria mellonella larval haemocytes during bacterial infection by Bacillus thuringiensis, J. Invert. Pathol., 2008, 98, 360鈥?62 CrossRef
    14. B眉y眉kg眉zel E., Tunaz H., Stanley D., B眉y眉kg眉zel K., The influence of chronic eicosanoid biosynthesis inhibition on life history of the greater wax moth, Galleria mellonella and its ectoparasitoid, Bracon hebetor, J. Insect Physiol., 2011, 57, 501鈥?07 CrossRef
    15. Lionakis M.S., Drosophila and Galleria insect model hosts: new tools for the study of fungal virulence, pharmacology and immunology, Virulence, 2011, 2, 521鈥?27 CrossRef
    16. Fallon J., Kelly J., Kavanagh K., Galleria mellonella as a model for fungal pathogenicity testing, Meth. Mol. Biol., 2012, 845, 469鈥?85 CrossRef
    17. Bogu艣 M.I., Kedra E., Bania J., Szczepanik M., Czygier M., Jab艂o艅ski P., et al., Different Defence strategies of Dendrolimus Pini, Galeria mellonella, and Calliophora vicina against fungal infection, J. Insect Physiol., 2007, 53, 909鈥?22 CrossRef
    18. Bania J., Samborski J., Bogu艣 M., Polanowski A., Specificity of an extracellular proteinase from Conidiobolus coronatus and its inhibition by an inhibitor from insect hemolymph, Arch. Insect Biochem. Physiol, 2006, 62, 186鈥?96 CrossRef
    19. Li R.S., Jarrett P., Burges H.D., Importance of spores, crystals and deltaendotoxins in the pathogenicity of different varieties of Bacillus thuringiensis in Galleria mellonella and Pieris brassicae, J. Invertebr. Pathol., 1987, 50, 277鈥?84 CrossRef
    20. Fedhila S., Buisson C., Dussurget O., Serror P., Glomski I.J., Lihl, P., et al., Comparative analysis of the virulence of invertebrate and mammalian pathogenic bacteria in the oral insect infection model Galleria mellonella, J. Invert. Pathol., 2010, 103, 24鈥?9 CrossRef
    21. Hultmark D., Engstrom A., Bennich H., Kapur R., Boman H.G., Insect immunity: Isolation and structure of cecropin D and four minor antibacterial components from Cecropia pupae, Europ. J. Biochem., 1982, 127, 207鈥?17 CrossRef
    22. Inagaki S., Miyasono M., Yamamoto M., Ohba K., Ishiguro T., Takeda R., et al., Induction of antibacterial activity against Bacillus thuringiensis in the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae), Appl. Entomol. Zool., 1992, 27, 565鈥?70
    23. Koga F., Xu W., Karpova T.S., McNally J.G., Baron R., Neckers L., Hsp90 inhibition transiently activates Src kinase and promotes Src-dependent Akt and Erk activation, Proc. Nat. Acad. Sci. USA, 2006, 1003, 11318鈥?1322 CrossRef
    24. Wojda I., Jakubowicz T., Humoral immune response upon mild heat-shock conditions in Galleria mellonella larvae, J. Insect Physiol., 2007, 53, 1134鈥?144 CrossRef
    25. Banerji U., Heat shock protein 90 as a drug target: Some like it hot, Clin. Cancer Res., 2009, 15, 9鈥?4 CrossRef
    26. Bradford M., A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding, Analyt. Biochem., 1976, 72, 248鈥?54 CrossRef
    27. Laemmli U.K., Cleavage of structural proteins during the assembly of the head of bacteriophage T4, Nature, 1970, 227, 680鈥?85 CrossRef
    28. Boman H.G., Nilsson-Faye I., Paul K., Rasmuson Jr. T., Insect immunity.I. Characteristics of an inducible cell-free antibacterial reaction in hemolymph of Samia cythia pupae, Infect. Immun., 1974, 10, 136鈥?45
    29. Wojda I., Kowalski P., Jakubowicz T., JNK MAP kinase is involved in the humoral immune response of the greater wax moth larvae Galleria mellonella, Arch. Insect Biochem. Physiol., 2004, 56, 143鈥?54 CrossRef
    30. Hultmark D., Quantification of antimicrobial activity using the inhibition-zone assay, In: Wiesner A., Dunphy G.B., Marmaras V.J., Morishima I., Sugumaran M., Yamakawa M. (Eds.), Techniques in Insect Immunology, SOS Publications, Fair Heaven, 1998
    31. Mohrig W., Messner B., [Immunoreaktionen bei Insekten. I. Lysozym als grundlegender antibakterieller Faktor im humoralen Abwehrmechanismus der Insekten], Biologische Zentralblatt, 1968, 87, 439鈥?70 (in German)
    32. Cytry艅ska M., Zdybicka-Barabas A., Jab艂o艅ski P., Detection of antibacterial polypeptide activity in situ after sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Anal. Biochem., 2001, 299, 274鈥?76 CrossRef
    33. Schagger H., von Jagow G., Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa, Analytical Biochemistry, 1987, 166, 368鈥?79 CrossRef
    34. Zhang L., Wu S., Peng Y., Li M., Sun L., Huang E., et al., The potential of the novel mosquitocidal Bacillus thuringiensis strain LLP29 for use in practice, J. Vector Ecol., 2011, 36, 458鈥?60 CrossRef
    35. Schuhmann B., Seitz V., Vilcinskas A., Podsiadlowski L., Cloning and expression of gallerimycin, an antifungal peptide expressed in immune response of greater wax moth larvae, Galleria mellonella, Arch. Insect Biochem. Physiol., 2003, 53, 125鈥?33 CrossRef
    36. Kim C.H., Lee J.H., Kim I., Seo S.J., Son S.M., Lee K.Y., et al., Purification and cDNA cloning of a cecropin-like peptide from the Great Wax Moth, Galleria mellonella, Molecular Cell, 2004, 17, 262鈥?66
    37. Lee Y.S., Yun E.K., Jang W.S., Kim I., Lee J.H., Park S.Y., et al., Purification, cDNA cloning and expression of an insect defensin from the great wax moth, Galleria mellonella, Insect Mol. Biol., 2004, 13, 65鈥?2 CrossRef
    38. Brown S.E., Howard A., Kasprzak A.B., Gordon K.H., East P.D., The discovery and analysis of a diverged family of novel antifungal moricin-like peptides in the wax moth Galleria mellonella, Insect Biochem. Mol. Biol., 2008, 38, 201鈥?12 CrossRef
    39. Phipps D.J., Chadwick J.S., Aston W.P., Gallysin-1, an antibacterial protein isolated from hemolymph of Galleria mellonella, Dev. Comp. Immunol., 1994, 18, 13鈥?3 CrossRef
    40. Shaik H.A., Sehnal F., Hemolin expression in the silk glands of Galleria mellonella in response to bacterial challenge and prior to cell disintegration, J. Insect Physiol., 2009, 55, 781鈥?87 CrossRef
    41. Nardo D.D., Masendycz P., Ho S., Cross M., Fleetwood A.J., Reynolds E.C., et al., A central role for the Hsp90-Cdc37 molecular chaperone module in interleukin-1 receptor-associated-independent signaling by toll-like receptors, J. Biol. Chem., 2005, 280, 9813鈥?822 CrossRef
    42. Ichiyanagi T., Imai T., Kajiwara C., Mizukami S., Nakai A., Nakayama T., et al., Essential role of endogenous heat shock protein 90 of dendritic cells in antigen cross-presentation, J. Immunol., 2010, 185, 2693鈥?700 CrossRef
    43. Oura J., Tamura Y., Kamiguchi K., Kutomi G., Sahara H., Torigoe T., et al., Extracellular heat shock protein 90 plays a role in translocating chaperoned antigen from endosome to proteasome for generating antigenic peptide to be cross-presented by dendritic cells, Int. Immunol., 2011, 23, 223鈥?37 CrossRef
    44. P艂ytycz B., Saljelid R., MHC molecules and lymphocytes: evolutionary perspective, Arch. Immunol. Ther. Exp., 1998, 46, 137鈥?42
    45. Dzik J.M., The ancestry and cumulative evolution of immune reactions, Acta Biochim. Polon., 2010, 57, 443鈥?66
    46. Zou J., Guo Y., Guettouche T., Smith D.F., Voellmy R., Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1, Cell, 1998, 94, 471鈥?80 CrossRef
    47. Wojda I., Kowalski P., Jakubowicz T., Humoral immune response of Galleria mellonella larvae after infection by Beauveria bassiana under optimal and heat-shock conditions, J. Insect Physiol., 2009, 55, 525鈥?31 CrossRef
    48. Singh V., Aballay A., Heat shock and genetic activation of HSF-1 enhance immunity to bacteria, Cell Cycle, 2006, 21, 2443鈥?446 CrossRef
    49. Singh V., Aballay A., Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity, Proc. Nat. Acad. Sci. USA, 2006, 103, 13092鈥?3097 CrossRef
    50. Fedhila S., Gohar M., Slamti L., Nel P., Lereclus D., The Bacillus thuringiensis PlcR-regulated gene inhA2 is necessary, but not sufficient for virulence, J. Bacteriol., 2003, 185, 2820鈥?825 CrossRef
    51. Altincicek B., Linder M., Linder D., Preissner K.T., Vilcinskas A., Microbial methaloproteinases mediate sensing of invading pathogens and activate innate immune responses in the Lepidopteran model host Galleria mellonella, Infect. Immun., 2007, 75, 175鈥?83 CrossRef
    52. Guillemet E., Cadot C., Tran S.-L., Guinebreti猫re M.H., Lereclus D., Ramarao N., The InhA metalloproteases of Bacillus cereus contribute concomitantly to virulence, J. Bacteriol., 2010, 192, 286鈥?94 CrossRef
    53. Hungness E.S., Robb B.W., Luo G.J., Hershko D.D., Hasselgren P.O., Hyperthermia-induced heat shock activates the transcription factor c/EBP-beta and augments IL-6 production in human intestinal epithelial cells, J. Am. Coll. Surg., 2002, 195, 619鈥?26 CrossRef
    54. Pritts T.A., Hungness E.S., Hershko D.D, Robb B.W., Sun X., Luo G.J., et al., Proteasome inhibitors induce heat shock response and increase IL-6 expression in human intestinal epithelial cells, Am. J. Physiol. Regul. Integr. Comp. Physiol., 2002, 282, R1016鈥揜1026
  • 作者单位:Iwona Wojda (1162)
    Patryk Kowalski (1162)

    1162. Department of Immunobiology, Faculty of Biology and Biotechnology, Institute of Biology and Biochemistry, Maria Curie-Sklodowska University, 20-033, Lublin, Poland
  • ISSN:1644-3632
文摘
Insects are good models for studying the innate immune response. We report that Galleria mellonella larvae infected with entomopathogenic bacteria Bacillus thuringiensis kurstaki show changes in the level of Hsp90. Our experimental approach was to pre-treat larvae with the Hsp90-binding compound, 17-DMAG, before infection with B. thuringiensis. We show that pre-treated animals display a higher level of immune response. This was mainly manifested by enhanced action of their hemolymph directed toward living bacteria as well as lysozyme activity digesting bacterial peptidoglycan. The observed phenomenon was due to the higher activity of antimicrobial peptides which, in contrast to healthy animals, was detected in the hemolymph of the immunestimulated larvae. Finally, the physiological significance of our observation was highlighted by the fact that G. mellonella pre-treated with 17-DMAG showed a prolonged survival rate after infection with B. thuringiensis than the control animals. Our report points to a role for Hsp90 in the immune response of G. mellonella after infection with B. thuringiensis at the optimal growth temperature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700