Identification of novel fusion genes in lung cancer using breakpoint assembly of transcriptome sequencing data
详细信息    查看全文
  • 作者:Lynnette Fernandez-Cuesta (1) (2)
    Ruping Sun (3) (4)
    Roopika Menon (5) (6)
    Julie George (1)
    Susanne Lorenz (7)
    Leonardo A Meza-Zepeda (7)
    Martin Peifer (1) (8)
    Dennis Plenker (1)
    Johannes M Heuckmann (6)
    Frauke Leenders (1)
    Thomas Zander (1) (10) (9)
    Ilona Dahmen (1)
    Mirjam Koker (1)
    Jakob Sch枚ttle (1) (11)
    Roland T Ullrich (11) (8) (9)
    Janine Altm眉ller (12) (13) (14)
    Christian Becker (12)
    Peter N眉rnberg (12) (13)
    Henrik Seidel (15)
    Diana B枚hm (5)
    Friederike G枚ke (5)
    Sascha Ans茅n (9)
    Prudence A Russell (16)
    Gavin M Wright (17)
    Zoe Wainer (17)
    Benjamin Solomon (18)
    Iver Petersen (19)
    Joachim H Clement (20)
    J枚rg S盲nger (21)
    Odd-Terje Brustugun (22) (23)
    脜slaug Helland (22) (23)
    Steinar Solberg (24)
    Marius Lund-Iversen (25)
    Reinhard Buettner (10) (26)
    J眉rgen Wolf (10) (9)
    Elisabeth Brambilla (27)
    Martin Vingron (3)
    Sven Perner (5)
    Stefan A Haas (3)
    Roman K Thomas (1) (26)
  • 刊名:Genome Biology
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:16
  • 期:1
  • 全文大小:1,888 KB
  • 参考文献:1. Weinstein IB, Joe A. Oncogene addiction. Cancer Res. 2008;68:3077鈥?0. CrossRef
    2. Ben-Neriah Y, Daley GQ, Mes-Masson A-M, Witte ON, Baltimore D. The chronic myelogenous leukemia-specific p210 protein is the product of the / bcr/abl hybrid gene. Nature. 1986;233:212鈥?.
    3. Kwak EL, Bang Y-J, Camidge DR, Shaw AT, Solomon B, Maki RG, et al. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. New Engl J Med. 2010;10:760鈥?4.
    4. Maher CA, Palanisamy N, Brenner JC, Cao X, Kalyana-Sundaram S, Luo S, et al. Chimeric transcript discovery by paired-end transcriptome sequencing. Proc Natl Acad Sci U S A. 2009;106:12353鈥?. CrossRef
    5. Wang Q, Xia J, Jia P, Pao W, Zhao Z. Application of next generation sequencing to human gene fusion detection: computational tools, features and perspectives. Brief Bioinform. 2013;14:506鈥?9. CrossRef
    6. Sboner A, Habegger L, Pflueger D, Terry S, Chen DZ, Rozowsky JS, et al. FusionSeq: a modular framework for finding gene fusions by analyzing paired-end RNA-sequencing data. Genome Biol. 2010;11:R104. CrossRef
    7. McPherson A, Hormozdiari F, Zayed A, Giuliany R, Ha G, Sun MGF, et al. deFuse: an algorithm for gene fusion discovery in tumor RNA-Seq data. PLoS Comp Biol. 2011;7:e1001138. CrossRef
    8. Kim D, Salzberg SL. TopHat-Fusion: an algorithm for discovery of novel fusion transcripts. Genome Biol. 2011;12:R72. CrossRef
    9. Ge H, Liu K, Juan T, Fang F, Newman M, Hoeck W. FusionMap: detecting fusion genes from next-generation sequencing data at base-pair resolution. Bioinformatics. 2011;27:1922鈥?. CrossRef
    10. Chen K, Wallis JW, Kandoth C, Kalicki-Veizer JM, Mungall KL, Mungall AJ, et al. BreakFusion: targeted assembly-based identification of gene fusions in whole transcriptome paired-end sequencing data. Bioinformatics. 2012;28:1923鈥?. CrossRef
    11. Wu TD, Nacu S. Fast and SNP-tolerant detection of complex variants and splicing in short reads. Bioinformatics. 2010;26:873鈥?1. CrossRef
    12. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29:15鈥?1. CrossRef
    13. Zerbino DR, Birney E. Velvet: algorithms for / de novo short read assembly using de Bruijn graphs. Genome Res. 2008;18:821鈥?. CrossRef
    14. Schulz MH, Zerbino DR, Vingron M, Birney E. Oases: robust de novo RNA-seq assembly across the dynamic range of expression levels. Bioinformatics. 2012;28:1086鈥?2. CrossRef
    15. Sasaki T, Rodig SJ, Chirieac LR, J盲nne PA. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer. 2010;46:1773鈥?0. CrossRef
    16. Rudin CM, Durinck S, Stawiski EW, Poirier JT, Modrusan Z, Shames DS, et al. Comprehensive genomic analysis identifies / SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet. 2012;44:1111鈥?. CrossRef
    17. Pasqualucci L, Dominguez-Sola D, Chiarenza A, Fabbri G, Grunn A, Trifonov V, et al. Inactivating mutations of acetyltransferase genes in B-cell lymphoma. Nature. 2011;471:189鈥?5. CrossRef
    18. Peifer M, Fern谩ndez-Cuesta L, Sos ML, George J, Seidel D, Kasper LH, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat Genet. 2012;44:1104鈥?0. CrossRef
    19. Li H, Wang J, Mor G, Sklar J. A neoplastic gene fusion mimics trans-splicing of RNAs in normal human cells. Science. 2008;321:1357鈥?1. CrossRef
    20. Li Y, Chien J, Smith DI, Ma J. FusionHunter: identifying fusion transcripts in cancer using paired-end RNA-seq. Bioinformatics. 2011;27:1708鈥?0. CrossRef
    21. Jia W, Qiu K, He M, Song P, Zhou Q, Zhou F, et al. SOAPfuse: an algorithm for identifying fusion transcripts from paired-end RNA-Seq data. Genome Biol. 2013;14:R12. CrossRef
    22. Sherwood V, Recino A, Jeffries A, Ward A, Chalmers AD. The N-terminal RASSF family: a new group of Ras-association-domain-containing proteins, with emerging links to cancer formation. Biochem J. 2010;425:303鈥?1. CrossRef
    23. Falvella FS, Manenti G, Spinola M, Pignatiello C, Conti B, Pastorino U, et al. Identification of / RASSF8 as a candidate lung tumor suppressor gene. Oncogene. 2006;25:3934鈥?. CrossRef
    24. Lock FE, Underhill-Day N, Dunwell T, Matallanas D, Cooper W, Hesson L, et al. The / RASSF8 candidate tumor suppressor inhibits cell growth and regulates the Wnt and NF-kappaB signaling pathways. Oncogene. 2010;29:4307鈥?6. CrossRef
    25. Grant GR, Farkas MH, Pizarro AD, Lahens NF, Schug J, Brunk BP, et al. Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics. 2011;27:2518鈥?8.
    26. Garber M, Grabherr MG, Guttman M, Trapnell C. Computational methods for transcriptome annotation and quantification using RNA-seq. Nat Methods. 2011;8:469鈥?7. CrossRef
    27. Kent WJ. BLAT鈥?The BLAST-Like Alignment Tool. Genome Res. 2002;12:656鈥?4. CrossRef
    28. TRUP. [http://github.com/ruping/TRUP.git].
    29. Scheble VJ, Braun M, Beroukhim R, Mermel CH, Ruiz C, Wilbertz T, et al. ERG rearrangement is specific to prostate cancer and does not occur in any other common tumor. Mod Pathol. 2010;23:1061鈥?. CrossRef
  • 作者单位:Lynnette Fernandez-Cuesta (1) (2)
    Ruping Sun (3) (4)
    Roopika Menon (5) (6)
    Julie George (1)
    Susanne Lorenz (7)
    Leonardo A Meza-Zepeda (7)
    Martin Peifer (1) (8)
    Dennis Plenker (1)
    Johannes M Heuckmann (6)
    Frauke Leenders (1)
    Thomas Zander (1) (10) (9)
    Ilona Dahmen (1)
    Mirjam Koker (1)
    Jakob Sch枚ttle (1) (11)
    Roland T Ullrich (11) (8) (9)
    Janine Altm眉ller (12) (13) (14)
    Christian Becker (12)
    Peter N眉rnberg (12) (13)
    Henrik Seidel (15)
    Diana B枚hm (5)
    Friederike G枚ke (5)
    Sascha Ans茅n (9)
    Prudence A Russell (16)
    Gavin M Wright (17)
    Zoe Wainer (17)
    Benjamin Solomon (18)
    Iver Petersen (19)
    Joachim H Clement (20)
    J枚rg S盲nger (21)
    Odd-Terje Brustugun (22) (23)
    脜slaug Helland (22) (23)
    Steinar Solberg (24)
    Marius Lund-Iversen (25)
    Reinhard Buettner (10) (26)
    J眉rgen Wolf (10) (9)
    Elisabeth Brambilla (27)
    Martin Vingron (3)
    Sven Perner (5)
    Stefan A Haas (3)
    Roman K Thomas (1) (26)

    1. Department of Translational Genomics, Center of Integrated Oncology Cologne鈥揃onn, Medical Faculty, University of Cologne, 50924, Cologne, Germany
    2. Genetic Cancer Susceptibility Group, Section of Genetics, International Agency for Research on Cancer (IARC-WHO), 69008, Lyons, France
    3. Computational Molecular Biology Group, Max Planck Institute for Molecular Genetics, D-14195, Berlin, Germany
    4. Department of Systems Biology, Columbia University, New York, NY, 10032, USA
    5. Department of Prostate Cancer Research, Institute of Pathology, Center for Integrated Oncology Cologne-Bonn, University Hospital of Bonn, Bonn, Germany
    6. Blackfield AG, Gottfried-Hagen-Str. 60, 51105, Cologne, Germany
    7. Department of Tumor Biology and Genomics Core Facility, Norwegian Radium Hospital, Oslo University Hospital, N-0310, Oslo, Norway
    8. Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931, Cologne, Germany
    10. Network Genomic Medicine, University Hospital Cologne, Center of Integrated Oncology Cologne-Bonn, 50924, Cologne, Germany
    9. Department I of Internal Medicine, Center of Integrated Oncology Cologne-Bonn, University of Cologne, 50924, Cologne, Germany
    11. Max Planck Institute for Neurological Research, 50931, Cologne, Germany
    12. Cologne Center for Genomics (CCG), University of Cologne, Cologne, 50931, Germany
    13. Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
    14. Institute of Human Genetics, University of Cologne, 50931, Cologne, Germany
    15. Bayer Schering, Berlin, Germany
    16. Department of Pathology, St. Vincent鈥檚 Hospital, Melbourne, 3065, Victoria, Australia
    17. University of Melbourne Department of Surgery, St Vincent鈥檚 Hospital, Melbourne, 3065, Victoria, Australia
    18. Department of Haematology and Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, 3002, Victoria, Australia
    19. Institute of Pathology, Jena University Hospital, Friedrich-Schiller-University, 07743, Jena, Germany
    20. Department of Internal Medicine II, Jena University Hospital, Friedrich-Schiller-University, 07743, Jena, Germany
    21. Institute for Pathology Bad Berka, 99438, Bad Berka, Germany
    22. Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, N-0424, Oslo, Norway
    23. Department of Oncology, Norwegian Radium Hospital, Oslo University Hospital, N-0310, Oslo, Norway
    24. Department of Thoracic Surgery, Rikshospitalet, Oslo University Hospital, N-0027, Oslo, Norway
    25. Department of Pathology, Norwegian Radium Hospital, Oslo University Hospital, N-0310, Oslo, Norway
    26. Department of Pathology, University Hospital Medical Center, University of Cologne, 50937, Cologne, Germany
    27. Department of Pathology, CHU Grenoble INSERM U823, Institute Albert Bonniot, 38043 CS10217, Grenoble, France
  • 刊物主题:Animal Genetics and Genomics; Human Genetics; Plant Genetics & Genomics; Microbial Genetics and Genomics; Fungus Genetics; Bioinformatics;
  • 出版者:BioMed Central
  • ISSN:1465-6906
文摘
Genomic translocation events frequently underlie cancer development through generation of gene fusions with oncogenic properties. Identification of such fusion transcripts by transcriptome sequencing might help to discover new potential therapeutic targets. We developed TRUP (Tumor-specimen suited RNA-seq Unified Pipeline) (https://github.com/ruping/TRUP), a computational approach that combines split-read and read-pair analysis with de novo assembly for the identification of chimeric transcripts in cancer specimens. We apply TRUP to RNA-seq data of different tumor types, and find it to be more sensitive than alternative tools in detecting chimeric transcripts, such as secondary rearrangements in EML4-ALK-positive lung tumors, or recurrent inactivating rearrangements affecting RASSF8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700