Characterization of microbial community structure in rhizosphere soils of Cowskin Azalea (Rhododendron aureum Georgi) on northern slope of Changbai Mountains, China
详细信息    查看全文
  • 作者:Wei Zhao ; Xiaojuan Qi ; Jianwei Lyu ; Zhengxiang Yu ; Xia Chen
  • 关键词:Rhododendron aureum Georgi ; microbial community structure ; rhizosphere ; Changbai Mountains
  • 刊名:Chinese Geographical Science
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:26
  • 期:1
  • 页码:78-89
  • 全文大小:513 KB
  • 参考文献:Bai Xiaoming, 1988. The Exploitation of Natural Resources and Protection of Ecological Environment in Changbaishan Mountain Region. Changchun: Jilin Science and Technology Press, 219–223. (in Chinese)
    Berg G, Opelt K, Zachow C et al., 2006. The rhizosphere effect on bacteria antagonistic towards the pathogenic fungus Verticillium differs depending on plant species and site. Fems Microbiology Ecology, 56(2): 250–261. doi: 10.1111/j.1574-6941.2005.00025.xCrossRef
    Chen W, Luo J K, Shen Q R, 2005. Effect of NH4+-N/NO3–-N ratios on growth and some physiological parameters of Chinese cabbage caltivars. Pedosphere, 15(3): 310–318.
    Chu H, Fierer N, Lauber C L et al., 2010. Soil bacterial diversity in the Arctic is not fundamentally different from that found in other biomes. Environmental Microbiology, 12(11): 2998–3006. doi: 10.1111/j.1462-2920.2010.02277.xCrossRef
    Chu H, Neufeld J D, Walker V K et al., 2011. The influence of vegetation type on the dominant soil bacteria, archaea, and fungi in a low Arctic tundra landscape. Soil Science Society of America Journal, 75(5): 1756–1765. doi: 10.2136/sssaj2011.0057CrossRef
    Djukic I, Zehetner F, Mentler A et al., 2010. Microbial community composition and activity in different alpine vegetation zones. Soil Biology and Biochemistry, 42(2): 155–161. doi:10.1016/j.soilbio.2009.10.006CrossRef
    Du Y D, Xing M, Chen X et al., 2011. Genetic diversity caused by environmental stress in natural populations of Niupidujuan (Rhododendron chrysanthum), a species endemic to Changbai Mountain, Northeast China, as revealed by RAPD technique. Chemical Research in Chinese Universites, 27(4): 641–645. doi: 1005-9040(2011)-04-641-05CrossRef
    Duineveld B M, Kowalchuk G A, Keijzer A et al., 2001. Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR-amplified 16SrRNA as well as DNA fragments coding for 16S rRNA. Applied and Environmental Microbiology, 67(1): 172–178. doi: 10.1128/AEM.67.1.172–178.2001CrossRef
    Foster R C, 1988. Microenvironments of soil microorganisms. Biology and Fertility of Soils, 6(3): 189–203. doi: 10.1007/BF00260816CrossRef
    Gong Yu, Liu Xianhu, Zhang Chunying et al., 2010. The anatomy structure of leaf-blades from Rhododendron chrysanthum Pall in different regions. Journal of Agricultural Science Yanbian University, 32(1): 22–25. (in Chinese)
    Govaerts B, Mezzalama M, Sayre K D et al., 2008. Long-term consequences of tillage, residue management, and crop rotation on selected soil micro-flora groups in the subtropical highlands. Applied Soil Ecology, 38(3): 197–210.doi: 10.1016/j.apsoil.2005.07.010CrossRef
    Hassan M M, Majumder A H, 1990. Distribution of organic matter in some representative forest soils of Bangladesh. Indian Journal of Forestry, 13(4): 281–287. doi: 19930672829
    Hu Linzhen, Fang Mingyuan, 1994. Flora of China. Beijing: Science Press, 144. (in Chinese)
    Jin J, Wang G H, Liu X B, 2009. Temporal and spatial dynamics of bacterial community in the rhizosphere of soybean genotypes grown in a black soil. Pedosphere, 19(6): 808–816. doi: 10.1016/S1002-0160(09)60176-4CrossRef
    Johnson D W, Cheng W, Ball J T, 2000. Effects of CO2 and N fertilization on decomposition and immobilization in ponderosa pine litter. Plant and Soil, 224(1): 115–122. doi: 10.1023/A:1004606901550CrossRef
    Kudo G, 1993. Relationships between flowering time and fruit set of the entomophilous alpine shrub, rhododendron aureum (Ericaceae), inhabiting snow patches. American Journal of Botany, 80(11): 1300–1304. doi: 10.2307/2445714CrossRef
    Lambers H, Mougel C, Jaillard B et al., 2009. Plant-microbesoil interactions in the rhizosphere: an evolutionary perspective. Plant & Soil, 321(1–2): 83–115. doi: 10.1007/s11104-009-0042-xCrossRef
    Lipson D A, Monson R K, 1998. Plant-microbe competition for soil amino acids in the alpine tundra: effects of freezethaw and dry-rewet events. Oecologia, 113(3): 406–414. doi: 10.1007/s004420050393CrossRef
    Liu Y F, Xing M, Zhao W et al., 2012. Genetic diversity analysis of Rhododendron aureum Georgi (Ericaceae) located on Changbai Mountain using ISSR and RAPD markers. Plant Systematics and Evolution, 298(5): 921–930. doi: 10.1007/s00606-012-0601-0CrossRef
    Marilley L, Aragno M, 1999. Phylogenetic diversity of bacterial communities differing in degree of proximity of Lolium perenne and Trifolium repens roots. Applied Soil Ecology, 13(2): 127–136. doi: 10.1016/S0929-1393(99)00028-1CrossRef
    Marschner P, Neumann G, Kania A et al., 2002. Spatial and temporal dynamics of the microbial community structure in the rhizosphere of cluster roots of white lupin (Lupinus albus L.). Plant & Soil, 246(2): 167–174. doi: 10.1038/ismej.2012.26CrossRef
    Miethling R, Wieland G, Backhaus H et al., 2000. Variation of microbial rhizosphere communities in response to crop species, soil origin, and inoculation with Sinorhizobium meliloti L33. Microbial Ecology, 40(1): 43–56. doi: 10.1007/s 002480000021CrossRef
    Nielsen U N, Osler G H R, Campbell C D et al., 2010. The influence of vegetation type, soil properties and precipitation on the composition of soil mite and microbial communities at the landscape scale. Journal of Biogeography, 37(7): 1317–1328. doi: 10.1111/j.1365-2699.2010.02281.xCrossRef
    Qi Linghuang, Zhang Xudong, Sun Qixiang et al., 2007. Soil vegetation system and its influences on soil health. World Forestry Research, 20(3): 1–8. (in Chinese)
    Rajaniemi T K, Allison V J, 2009. Abiotic conditions and plant cover differentially affect microbial biomass and community composition on dune gradients. Soil Biology & Biochemistry, 41(1): 102–109. doi: 10.1016/j.soilbio.2008.10.001CrossRef
    Schmalenberger A, Tebbe C C, 2003. Bacterial diversity in maize rhizospheres: conclusions on the use of genetic profiles based on PCR-amplified partial small subunit rRNA genes in ecological studies. Molecular Ecology, 12(1): 251–261. doi: 10.1046/j.1365-294X.2003.01716.xCrossRef
    Shen C, Xiong J, Zhang H et al., 2013. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biology and Biochemistry, 573: 204–211. doi: 10.1016/j.soilbio.2012.07.013CrossRef
    Shirokikh I G, Zenova G M, Zvyagintsev D G, 2002. Actinomycetes in the rhizosphere of barley grown on acid soddy podzolic soil. Microbiology, 71(4): 455–459. doi: 10.1023/A: 1019853812690CrossRef
    Stephan A, Meyer A H, Schmid B, 2000. Plant diversity affects culturable soil bacteria in experimental grassland communities. Journal of Ecology, 88(6): 988–998. doi: 10.1046/j.1365-2745.2000.00510.xCrossRef
    Sun G, Luo P, Wu N et al., 2009. Stellera chamaejasme L. increases soil N availability, turnover rates and microbial biomass in an alpine meadow ecosystem on the eastern Tibetan Plateau of China. Soil Biology & Biochemistry, 41(1): 86–91. doi: 10.1016/j.soilbio.2008.09.022
    Thangapandian V, Ponmurugan P, Pomnurugan K, 2007. Actinomycetes diversity in the rhizosphere soils of different medicinal plants in Kolly Hills-Tamilnadu, India, for secondary metabolite production. Asian Journal of Plant Sciences, 6(1): 66–70.CrossRef
    Wagai R, Kitayama K, Satomura T et al., 2011. Interactive influences of climate and parent material on soil microbial community structure in Bornean tropical forest ecosystems. Ecological Research, 26(3): 627–636. doi: 10.1007/s11284-011-0822-7CrossRef
    Wallenstein M D, McMahon S, Schimel J, 2007. Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS Microbiology Ecology, 59(2): 428–435. doi: 10.1111/j.1574-6941.2006.00260.xCrossRef
    Xu Guanghuing, Zheng Hongyuan, 1986. Handbook of Analysis of Soil Microorganism. Beijing: Agriculture Press, 107–109. (in Chinese)
    Xu Wenduo, He Xingyuan, Chen Wei et al., 2004. Characteristics and succession rules of vegetation types in Changbai Mountain. Chinese Journal of Ecology, 23(5): 162–174. (in Chinese)
    Yang X, Wu G, 1998. The strategy for conservation and sustainable utilization of biodiversity in Changbaishan Biosphere Reserve. Journal of Forestry Research, 9(3): 217–222. doi: 10.1007/BF02910074CrossRef
    Zhang M, Zhang X K, Liang W J et al., 2011. Distribution of soil organic carbon fractions along the altitudinal gradient in Changbai Mountain, China. Pedosphere, 21(5): 615–620. doi: 10.1016/S1002-0160(11)60163-XCrossRef
  • 作者单位:Wei Zhao (1) (3) (4)
    Xiaojuan Qi (2)
    Jianwei Lyu (1)
    Zhengxiang Yu (5)
    Xia Chen (1) (3)

    1. National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, Jilin University, Changchun, 130112, China
    3. School of Life Science, Jilin University, Changchun, 130021, China
    4. Changbai Mountains Academy of Sciences, Antu, 133613, China
    2. College of Basic Medicine, Qiqihar Medical University, Qiqihar, 161006, China
    5. Jilin University, Changchun, 130112, China
  • 刊物主题:Geography (general);
  • 出版者:Springer Berlin Heidelberg
  • ISSN:1993-064X
文摘
The vegetation and soil are mutual environmental factors, soil characteristics, such as chemical properties and microorganism that affect the vegetation occurrence, development and succession speed. In this study, we evaluated the structure of microbial communities of rhizosphere of Cowskin Azalea (Rhododendron aureum Georgi) populations and compared with non-rhizosphere soils at four sample sites of the Changbai Mountains, China, and analyzed the correlation between chemical properties of soil and microbial communities. The results showed that microbial structure and soil chemical properties are significant superior to non-rhizosphere at all four sample sites. The rhizosphere microorganisms are mainly composed of bacteria, actinomycetes, followed by fungi least. The principal component analysis (PCA) biplot displayed that there are differences between rhizosphere and non-rhizosphere soils for microflora; Through correlation analysis, we found that the bacteria is clearly influenced by pH on the Changbai Mountains, besides pH, other soil features such as NO 3 – -N. These data highlight that R. aureum as the dominant vegetation living in the alpine tundra is a key factor in the formation of soil microorganism and improving soil fertility, and is of great significance for the maintenance of alpine tundra ecosystem. Keywords Rhododendron aureum Georgi microbial community structure rhizosphere Changbai Mountains

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700