Organic–inorganic bismuth (III)-based material: A lead-free, air-stable and solution-processable light-absorber beyond organolead perovskites
详细信息    查看全文
  • 作者:Miaoqiang Lyu ; Jung-Ho Yun ; Molang Cai ; Yalong Jiao ; Paul V. Bernhardt…
  • 关键词:methylammonium bismuth (III) iodide ; single crystal ; perovskite solar cells ; organic–inorganic hybrid material ; lead ; free
  • 刊名:Nano Research
  • 出版年:2016
  • 出版时间:March 2016
  • 年:2016
  • 卷:9
  • 期:3
  • 页码:692-702
  • 全文大小:2,327 KB
  • 参考文献:[1]Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on mesosuperstructured organometal halide perovskites. Science 2012, 338, 643–647.CrossRef
    [2]Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.CrossRef
    [3]Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T.-B.; Duan, H.-S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.CrossRef
    [4]Mei, A. Y.; Li, X.; Liu, L. F.; Ku, Z. L.; Liu, T. F.; Rong, Y. G.; Xu, M.; Hu, M.; Chen, J. Z.; Yang, Y. et al. A holeconductor- free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295–298.CrossRef
    [5]Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.CrossRef
    [6]Green, M. A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E. D. Solar cell efficiency tables (Version 45). Prog. Photovolt. Res. Appl. 2015, 23, 1–9.
    [7]Grätzel, M. The light and shade of perovskite solar cells. Nat. Mater. 2014, 13, 838–842.CrossRef
    [8]Boix, P. P.; Agarwala, S.; Koh, T. M.; Mathews, N.; Mhaisalkar, S. G. Perovskite solar cells: Beyond methylammonium lead iodide. J. Phys. Chem. Lett. 2015, 6, 898–907.CrossRef
    [9]Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P.; Kanatzidis, M. G. Lead-free solid-state organic-inorganic halide perovskite solar cells. Nat. Photonics 2014, 8, 489–494.CrossRef
    [10]Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M. et al. Lead-free halide perovskite solar cells with high photocurrents realized through vacancy modulation. Adv. Mater. 2014, 26, 7122–7127.CrossRef
    [11]Noel, N. K.; Stranks, S. D.; Abate, A.; Wehrenfennig, C.; Guarnera, S.; Haghighirad, A. A.; Sadhanala, A.; Eperon, G. E.; Pathak, S. K.; Johnston, M. B. et al. Lead-free organicinorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 2014, 7, 3061–3068.CrossRef
    [12]Cortecchia, D.; Dewi, H. A.; Sabba, D.; Baikie, T.; Soci, C.; Mathews, N. “Green” 2D hybrid perovskites for perovskitebased solar cells. In European Optical Society Annual Meeting (EOSAM 2014), Berlin, 2014.
    [13]Smith, I. C.; Hoke, E. T.; Solis-Ibarra, D.; McGehee, M. D.; Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. 2014, 126, 11414–11417.CrossRef
    [14]Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. Nano Lett. 2013, 13, 1764–1769.CrossRef
    [15]Leblanc, N.; Mercier, N.; Zorina, L.; Simonov, S.; Auban-Senzier, P.; Pasquier, C. Large spontaneous polarization and clear hysteresis loop of a room-temperature hybrid ferroelectric based on mixed-halide [BiI3Cl2] polar chains and methylviologen dication. J. Am. Chem. Soc. 2011, 133, 14924–14927.CrossRef
    [16]Mitzi, D. B.; Brock, P. Structure and optical properties of several organic-inorganic hybrids containing corner-sharing chains of bismuth iodide octahedra. Inorg. Chem. 2001, 40, 2096–2104.CrossRef
    [17]Kawai, T.; Ishii, A.; Kitamura, T.; Shimanuki, S.; Iwata, M.; Ishibashi, Y. Optical absorption in band-edge region of (CH3NH3)3Bi2I9 single crystals. J. Phys. Soc. Jpn. 1996, 65, 1464–1468.CrossRef
    [18]Jakubas, R.; Zaleski, J.; Sobczyk, L. Phase transitions in (CH3NH3)3Bi2I9 (MAIB). Ferroelectrics 1990, 108, 109–114.CrossRef
    [19]Fisher, G. A.; Norman, N. C. The structures of the group 15 element(III) halides and halogenoanions. Adv. Inorg. Chem. 1994, 41, 233–271.CrossRef
    [20]Kawai, T.; Shimanuki, S. Optical studies of (CH3NH3)3Bi2I9 single crystals. Phys. Stat. Sol. (b) 1993, 177, K43–K45.CrossRef
    [21]Murphy, A. B. Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energy Mater. Sol. Cells 2007, 91, 1326–1337.CrossRef
    [22]Cai, Y. Q.; Zhang, G.; Zhang, Y. W. Layer-dependent band alignment and work function of few-layer phosphorene. Sci. Rep. 2014, 4, 6677.CrossRef
    [23]Melitz, W.; Shen, J.; Kummel, A. C.; Lee, S. Kelvin probe force microscopy and its application. Surf. Sci. Rep. 2011, 66, 1–27.CrossRef
    [24]Ren, S. Q.; Chang, L. Y.; Lim, S. K.; Zhao, J.; Smith, M.; Zhao, N.; Bulović, V.; Bawendi, M.; Gradečak, S. Inorganicorganic hybrid solar cell: Bridging quantum dots to conjugated polymer nanowires. Nano Lett. 2011, 11, 3998–4002.CrossRef
    [25]Stoumpos, C. C.; Malliakas, C. D.; Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 2013, 52, 9019–9038.CrossRef
    [26]Chen, Z.; Wang, J. J.; Ren, Y. H.; Yu, C. L.; Shum, K. Schottky solar cells based on CsSnI3 thin-films. Appl. Phys. Lett. 2012, 101, 093901.CrossRef
    [27]Hrizi, C.; Chaari, N.; Abid, Y.; Chniba-Boudjada, N.; Chaabouni, S. Structural characterization, vibrational and optical properties of a novel one-dimensional organic–inorganic hybrid based-iodobismuthate(III) material, [C10H7NH3]BiI4. Polyhedron 2012, 46, 41–46.CrossRef
    [28]Leblanc, N.; Mercier, N.; Allain, M.; Toma, O.; Auban-Senzier, P.; Pasquier, C. The motley family of polar compounds (MV)[M(X5−x X′x)] based on anionic chains of trans-connected M(III)(X, X′)6 octahedra (M = Bi, Sb; X, X′ = Cl, Br, I) and methylviologen (MV) dications. J. Solid State Chem. 2012, 195, 140–148.CrossRef
    [29]Liu, B.; Xu, L.; Guo, G.-C.; Huang, J.-S. Three inorganic–organic hybrids of bismuth(III) iodide complexes containing substituted 1,2,4-triazole organic components with charaterizations of diffuse reflectance spectra. J. Solid State Chem. 2006, 179, 1611–1617.CrossRef
  • 作者单位:Miaoqiang Lyu (1)
    Jung-Ho Yun (1)
    Molang Cai (2)
    Yalong Jiao (2)
    Paul V. Bernhardt (3)
    Meng Zhang (1)
    Qiong Wang (1)
    Aijun Du (2)
    Hongxia Wang (2)
    Gang Liu (4)
    Lianzhou Wang (1)

    1. Nanomaterials Centre, School of Chemical Engineering and AIBN, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
    2. School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD, 4001, Australia
    3. School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, 4072, Australia
    4. Advanced Carbon Division, Institute of Metal Research Chinese Academy of Sciences (IMR CAS), 72 Wenhua Road, Shenyang, 110016, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Methylammonium bismuth (III) iodide single crystals and films have been developed and investigated. We have further presented the first demonstration of using this organic–inorganic bismuth-based material to replace lead/tin-based perovskite materials in solution-processable solar cells. The organic–inorganic bismuth-based material has advantages of non-toxicity, ambient stability, and low-temperature solution-processability, which provides a promising solution to address the toxicity and stability challenges in organolead- and organotin-based perovskite solar cells. We also demonstrated that trivalent metal cation-based organic–inorganic hybrid materials can exhibit photovoltaic effect, which may inspire more research work on developing and applying organic-inorganic hybrid materials beyond divalent metal cations (Pb (II) and Sn (II)) for solar energy applications.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700