Development of NIR-II fluorescence image-guided and pH-responsive nanocapsules for cocktail drug delivery
详细信息    查看全文
  • 作者:Sheng Huang ; Shan Peng ; Yuanbao Li ; Jiabin Cui ; Hongli Chen ; Leyu Wang
  • 关键词:near IR fluorescence ; pH responsive ; cocktail drug delivery
  • 刊名:Nano Research
  • 出版年:2015
  • 出版时间:June 2015
  • 年:2015
  • 卷:8
  • 期:6
  • 页码:1932-1943
  • 全文大小:1,770 KB
  • 参考文献:[1]Sugano, K.; Kansy, M.; Artursson, P.; Avdeef, A.; Bendels, S.; Di, L.; Ecker, G. F.; Faller, B.; Fischer, H.; Gerebtzoff, G. et al. Coexistence of passive and carrier-mediated processes in drug transport. Nat. Rev. Drug Discovery 2010, 9, 597鈥?14.View Article
    [2]Petros, R. A.; DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discovery 2010, 9, 615鈥?27.View Article
    [3]Fu, J. L.; Yan, H. Controlled drug release by a nanorobot. Nat. Biotechnol. 2012, 30, 407鈥?08.View Article
    [4]MacKay, J. A.; Chen, M. N.; McDaniel, J. R.; Liu, W. G.; Simnick, A. J.; Chilkoti, A. Self-assembling chimeric polypeptide-doxorubicin conjugate nanoparticles that abolish tumours after a single injection. Nat. Mater. 2009, 8, 993鈥?99.View Article
    [5]Kong, G.; Braun, R. D.; Dewhirst, M. W. Hyperthermia enables tumor-specific nanoparticle delivery: Effect of particle size. Cancer Res. 2000, 60, 4440鈥?445.
    [6]Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 2013, 12, 991鈥?003.View Article
    [7]Kearney, C. J.; Mooney, D. J. Macroscale delivery systems for molecular and cellular payloads. Nat. Mater. 2013, 12, 1004鈥?017.View Article
    [8]Stuart, M. A. C.; Huck, W. T. S.; Genzer, J.; Muller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M. et al. Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 2010, 9, 101鈥?13.View Article
    [9]Lee, T. K.; Sokoloski, T. D.; Royer, G. P. Serum albumin beads: An injectable, biodegradable system for the sustained release of drugs. Science 1981, 213, 233鈥?35.View Article
    [10]Zhou, C.; Hao, G. Y.; Thomas, P.; Liu, J. B.; Yu, M. X.; Sun, S. S.; 脰z, O. K.; Sun, X. K.; Zheng, J. Near-infrared emitting radioactive gold nanoparticles with molecular pharmacokinetics. Angew. Chem. Int. Ed. 2012, 51, 10118鈥?0122.View Article
    [11]Choi, H. S.; Ipe, B. I.; Misra, P.; Lee, J. H.; Bawendi, M. G.; Frangioni, J. V. Tissue- and organ-selective biodistribution of NIR fluorescent quantum dots. Nano Lett. 2009, 9, 2354鈥?359.View Article
    [12]Prescott, J. H.; Lipka, S.; Baldwin, S.; Sheppard, N. F.; Maloney, J. M.; Coppeta, J.; Yomtov, B.; Staples, M. A.; Santini, J. T. Chronic, programmed polypeptide delivery from an implanted, multireservoir microchip device. Nat. Biotechnol. 2006, 24, 437鈥?38.View Article
    [13]Gref, R.; Minamitake, Y.; Peracchia, M. T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science 1994, 263, 1600鈥?603.View Article
    [14]Namgung, R.; Lee, Y. M.; Kim, J.; Jang, Y.; Lee, B. H.; Kim, I. S.; Sokkar, P.; Rhee, Y. M.; Hoffman, A. S.; Kim, W. J. Poly-cyclodextrin and poly-paclitaxel nano-assembly for anticancer therapy. Nat. Commun. 2014, 5, 4702鈥?713.View Article
    [15]Cui, J. W.; Yan, Y.; Wang, Y. J.; Caruso, F. Templated sssembly of pH-labile polymer-drug particles for intracellular drug delivery. Adv. Funct. Mater. 2012, 22, 4718鈥?723.View Article
    [16]Yan, Y.; Wang, Y. J.; Heath, J. K.; Nice, E. C.; Caruso, F. Cellular association and cargo release of redox-responsive polymer capsules mediated by exofacial thiols. Adv. Mater. 2011, 23, 3916鈥?921.View Article
    [17]Liu, Z.; Fan, A. C.; Rakhra, K.; Sherlock, S.; Goodwin, A.; Chen, X. Y.; Yang, Q. W.; Felsher, D. W.; Dai, H. J. Supramolecular stacking of doxorubicin on carbon nanotubes for in vivo cancer therapy. Angew. Chem. Int. Ed. 2009, 48, 7668鈥?672.View Article
    [18]Peng, F.; Su, Y. Y.; Wei, X. P.; Lu, Y. M.; Zhou, Y. F.; Zhong, Y. L.; Lee, S. T.; He, Y. Silicon-nanowire-based nanocarriers with ultrahigh drug-loading capacity for in vitro and in vivo cancer therapy. Angew. Chem. Int. Ed. 2013, 52, 1457鈥?461.View Article
    [19]Wang, Y. H.; Xu, Z. H.; Guo, S. T.; Zhang, L.; Sharma, A.; Robertson, G. P.; Huang, L. Intravenous delivery of siRNA targeting CD47 effectively inhibits melanoma tumor growth and lung metastasis. Mol. Ther. 2013, 21, 1919鈥?929.View Article
    [20]Wang, Q. L.; Zhuang, X. Y.; Mu, J. Y.; Deng, Z. B.; Jiang, H.; Zhang, L. F.; Xiang, X. Y.; Wang, B. M.; Yan, J.; Miller, D. et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat. Commun. 2013, 4, 2886鈥?896.
    [21]Santra, S.; Kaittanis, C.; Santiesteban, O. J.; Perez, J. M. Cell-specific, activatable, and theranostic prodrug for dual-targeted cancer imaging and therapy. J. Am. Chem. Soc. 2011, 133, 16680鈥?6688.View Article
    [22]Du, J. Z.; Du, X. J.; Mao, C. Q.; Wang, J. Tailor-made dual pH-sensitive polymer-doxorubicin nanoparticles for efficient anticancer drug delivery. J. Am. Chem. Soc. 2011, 133, 17560鈥?7563.View Article
    [23]Ellis, G. A.; Palte, M. J.; Raines, R. T. Boronate-mediated biologic delivery. J. Am. Chem. Soc. 2012, 134, 3631鈥?634.View Article
    [24]Chen, W.; Meng, F. H.; Li, F.; Ji, S. J.; Zhong, Z. Y. pH-responsive biodegradable micelles based on acid-labile polycarbonate hydrophobe: Synthesis and triggered drug release. Biomacromolecules 2009, 10, 1727鈥?735.View Article
    [25]Kolano, C.; Helbing, J.; Kozinski, M.; Sander, W.; Hamm, P. Watching hydrogen-bond dynamics in a beta-turn by transient two-dimensional infrared spectroscopy. Nature 2006, 444, 469鈥?72.View Article
    [26]Zhang, J.; Chen, P. C.; Yuan, B. K.; Ji, W.; Cheng, Z. H.; Qiu, X. H. Real-space identification of intermolecular bonding with atomic force microscopy. Science 2013, 342, 611鈥?14.View Article
    [27]Takahara, P. M.; Rosenzweig, A. C.; Frederick, C. A.; Lippard, S. J. Crystal structure of double-stranded DNA containing the major adduct of the anticancer drug cisplatin. Nature 1995, 377, 649鈥?52.View Article
    [28]Prota, A. E.; Bargsten, K.; Zurwerra, D.; Field, J. J.; D铆az, J. F.; Altmann, K. H.; Steinmetz, M. O. Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science 2013, 339, 587鈥?90.View Article
    [29]Kim, B. S.; Park, S. W.; Hammond, P. T. Hydrogen-bonding layer-by-layer assembled biodegradable polymeric micelles as drug delivery vehicles from surfaces. ACS Nano 2008, 2, 386鈥?92.View Article
    [30]Ma, M. L.; Kuang, Y.; Gao, Y.; Zhang, Y.; Gao, P.; Xu, B. Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels. J. Am. Chem. Soc. 2010, 132, 2719鈥?728.View Article
    [31]Xing, B. G.; Yu, C. W.; Chow, K. H.; Ho, P. L.; Fu, D. G.; Xu, B. Hydrophobic interaction and hydrogen bonding cooperatively confer a vancomycin hydrogel: A potential candidate for biomaterials. J. Am. Chem. Soc. 2002, 124, 14846鈥?4847.View Article
    [32]Pasparakis, G.; Manouras, T.; Vamvakaki, M.; Argitis, P. Harnessing photochemical internalization with dual degradable nanoparticles for combinatorial photo-chemotherapy. Nat. Commun. 2014, 5, 4623鈥?631.View Article
    [33]Mikhaylov, G.; Mikac, U.; Magaeva, A. A.; Itin, V. I.; Naiden, E. P.; Psakhye, I.; Babes, L.; Reinheckel, T.; Peters, C.; Zeiser, R. et al. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat. Nanotechnol. 2011, 6, 594鈥?02.View Article
    [34]Kaittanis, C.; Shaffer, T. M.; Ogirala, A.; Santra, S.; Perez, J. M.; Chiosis, G.; Li, Y. M.; Josephson, L.; Grimm, J. Environment-responsive nanophores for therapy and treatment monitoring via molecular MRI quenching. Nat. Commun. 2014, 5, 4384鈥?394.View Article
    [35]Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J. F.; Heurtaux, D.; Clayette, P.; Kreuz, C. et al. Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater. 2010, 9, 172鈥?78.View Article
    [36]Wang, H. J.; Wang, L. Y. One-pot syntheses and cell imaging applications of poly(amino acid) coated LaVO4:Eu3+ luminescent nanocrystals. Inorg. Chem. 2013, 52, 2439鈥?445.View Article
    [37]Wang, L. Y.; Zhang, Y.; Zhu, Y. Y. One-pot synthesis and strong near-infrared upconversion luminescence of poly(acrylic acid)-functionalized YF3:Yb3+/Er3+ nanocrystals. Nano Res. 2010, 3, 317鈥?25.View Article
    [38]Deng, M. L.; Ma, Y. X.; Huang, S.; Hu, G. F.; Wang, L. Y. Monodisperse upconversion NaYF4 nanocrystals: Syntheses and bioapplications. Nano Res. 2011, 4, 685鈥?94.View Article
    [39]Deng, M. L.; Tu, N. N.; Bai, F.; Wang, L. Y. Surface functionalization of hydrophobic nanocrystals with one particle per micelle for bioapplications. Chem. Mater. 2012, 24, 2592鈥?597.View Article
    [40]Deng, M. L.; Wang, L. Y. Unexpected luminescence enhancement of upconverting nanocrystals by cation exchange with well retained small particle size. Nano Res. 2014, 7, 782鈥?93.View Article
    [41]Li, H.; Wang, L. Y. Controllable multicolor upconversion luminescence by tuning the NaF dosage. Chem. -Asian J. 2014, 9, 153鈥?57.View Article
    [42]Li, H.; Wang, L. Y. Preparation and upconversion luminescence cell imaging of O-carboxymethyl chitosan-functionalized NaYF4:Yb3+/Tm3+/Er3+ nanoparticles. Chin. Sci. Bull. 2013, 58, 4051鈥?056.View Article
    [43]Huang, S.; Bai, M.; Wang, L. Y. General and facile surface functionalization of hydrophobic nanocrystals with poly(amino acid) for cell luminescence imaging. Sci. Rep. 2013, 3, 2023鈥?027.
    [44]Peer, D.; Karp, J. M.; Hong, S.; FaroKhzad, O. C.; Margalit, R.; Langer, R. Nanocarriers as an emerging platform for cancer therapy. Nat. Nanotechnol. 2007, 2, 751鈥?60.View Article
    [45]Hong, G. S.; Robinson, J. T.; Zhang, Y. J.; Diao, S.; Antaris, A. L.; Wang, Q. B.; Dai, H. J. In vivo fluorescence imaging with Ag2S quantum dots in the second near-infrared region. Angew. Chem. Int. Ed. 2012, 51, 9818鈥?821.View Article
    [46]Jiang, P.; Tian, Z. Q.; Zhu, C. N.; Zhang, Z. L.; Pang, D. W. Emission-tunable near-infrared Ag2S quantum dots. Chem. Mat. 2012, 24, 3鈥?.View Article
    [47]Du, Y. P.; Xu, B.; Fu, T.; Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 2010, 132, 1470鈥?471.View Article
    [48]Yi, H. J.; Ghosh, D.; Ham, M. H.; Qi, J. F.; Barone, P. W.; Strano, M. S.; Belcher, A. M. M13 phage-functionalized single-walled carbon nanotubes as nanoprobes for second near-infrared window fluorescence imaging of targeted tumors. Nano Lett. 2012, 12, 1176鈥?183.View Article
    [49]Tu, N. N.; Wang, L. Y. Surface plasmon resonance enhanced upconversion luminescence in aqueous media for TNT selective detection. Chem. Commun. 2013, 49, 6319鈥?321.View Article
    [50]Hu, S. H.; Chen, S. Y.; Gao, X. H. Multifunctional nanocapsules for simultaneous encapsulation of hydrophilic and hydrophobic compounds and on-demand release. ACS Nano 2012, 6, 2558鈥?565.View Article
    [51]Ruoslahti, E.; Pierschbacher, M. D. New perspectives in cell adhesion: RGD and integrins. Science 1987, 238, 491鈥?97.View Article
    [52]Balasubramanian, S. V.; Straubinger, R. M. Taxol-lipid interactions: Taxol-dependent effects on the physical properties of model membranes. Biochemistry 1994, 33, 8941鈥?947.View Article
    [53]Lv, P. P.; Ma, Y. F.; Yu, R.; Yue, H.; Ni, D. Z.; Wei, W.; Ma, G. H. Targeted delivery of insoluble cargo (paclitaxel) by PEGylated chitosan nanoparticles grafted with Arg-Gly-Asp (RGD). Mol. Pharmaceutics 2012, 9, 1736鈥?747.View Article
  • 作者单位:Sheng Huang (1)
    Shan Peng (1)
    Yuanbao Li (1)
    Jiabin Cui (1)
    Hongli Chen (1)
    Leyu Wang (1)

    1. State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Environmentally Harmful Chemical Analysis, Beijing University of Chemical Technology, Beijing, 100029, China
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chinese Library of Science
    Chemistry
    Nanotechnology
  • 出版者:Tsinghua University Press, co-published with Springer-Verlag GmbH
  • ISSN:1998-0000
文摘
Nanocapsule-based targeted delivery and stimulus-responsive release can increase drug effectiveness, while reducing the side effects of the drug. However, difficulties in the scale-up synthesis, fast burst release, and low degradability, could hamper the translation of drug nanocapsules from lab to clinic. Here we have controllably functionalized the biodegradable and widely available polysuccinimide, in order to obtain an amphiphilic poly(amino acid). Using this polymer, we designed nanocapsules (< 100 nm) for hydrophobic drug delivery, which could facilitate tumor targeting, hydrogen bond-based pH-responsive release, and real-time fluorescence tracking, in the second near-infrared region. This method is versatile, eco-friendly, and easy to scale up at low costs. In addition, this system can carry a cocktail of drugs, obtained by loading multiple anticancer drugs to the same vehicle. Our nanocapsules were observed to be stable in blood vessels (pH = 7.4), and the pH-responsive release (pH = 5.0 in lysosome) was sustained. The chemotherapy results in tumor-xenografted mice suggested that our nanocapsule was safe and efficient, and may be a useful tool for drug delivery.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700