Characterization of a thermophilic and halotolerant Geobacillus pallidus H9 and its application in microbial enhanced oil recovery (MEOR)
详细信息    查看全文
  • 作者:Xia Wenjie (1) (2)
    Yu Li (1)
    Wang Ping (1)
    Xiu Jianlong (1)
    Dong Hanping (1)
  • 关键词:Geobacillus pallidus ; Thermophilic and halotolerant ; Biodegradation ; Biosurfactant ; Oil recovery
  • 刊名:Annals of Microbiology
  • 出版年:2012
  • 出版时间:December 2012
  • 年:2012
  • 卷:62
  • 期:4
  • 页码:1779-1789
  • 全文大小:415KB
  • 参考文献:1. Afshar S, Lotfabad TB, Roostaazad R, Najafabadi AR, Noghabi KA (2008) Comparative approach for detection of biosurfactant producing bacteria isolated from Ahvaz petroleum excavation areas in south of Iran. Ann Microbiol 58:555-60 CrossRef
    2. Al-Tahhan RA, Tahhan AL, Sandrin TR, Bodour AA, Maier RM (2000) Rhamnolipid-induced removal of lipopolysaccharide from / Pseudomonas aeruginosa: effect on cell surface properties and interaction with hydrophobic substrates. Appl Environ Microbiol 66:3262-268 CrossRef
    3. Altschul SF, Gish W, Mille W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403-10
    4. Brown LR (2010) Microbial enhanced oil recovery. Curr Opin Microbiol 13:316-20 CrossRef
    5. Chayabutra C, Ju LW (2000) Degradation of n-hexadecane and its metabolites by / Pseudomonas aeruginosa under microaerobic and anaerobic denitrifying conditions. Appl Environ Microbiol 66:493-98 CrossRef
    6. Cooper DG, Goldenberg BG (1987) Surface-active agents from two / Bacilllus species. Appl Environ Microbiol 53:224-29
    7. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61:47-4
    8. Dubois M, Gills KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugar and related substances. Anal Chem 28:350-56 CrossRef
    9. Etoumi A (2007) Microbial treatment of waxy crude oils for mitigation of wax precipitation. J Pet Sci Eng 55:111-21 CrossRef
    10. Garrity GM, Brenner DJ, Krieg NR, Staley JT (2004) Taxonomic outline of the prokaryotes. Bergey’s manual of systematic bacteriology. May 2005, 2nd edn, vol 2. Springer, New York. DOI: 10.1007/bergeysoutline200405
    11. Haba E, Espuny MJ, Busquets M, Manresa A (2000) Screening and production of rhamnolipids by / Pseudomonas aeruginosa 47?T2 NCIB 40044 from waste frying oils. J Appl Microbiol 88:379-87 CrossRef
    12. Han J, Duan WZ (1998) Feasibility study of extracting lipids by dichloromethane substituting for chloroform. Chinese J Anal Chem 26:1164-167
    13. Hao RX, Lu A, Zeng YS (2004) Effect on crude oil by thermophilic bacterium. J Pet Sci Technol Eng 43:247-58 CrossRef
    14. Jenneman GE (1989) Potential of in situ microbial enhanced oil recovery. In: Donaldson EC, Chilingarian GV, Yen TF(eds) Microbial enhanced oil recovery, Chapter 3. Elsevier, Amsterdam, pp?37-9
    15. Jobson A, Cook FD, Westlake DWS (1972) Microbial utilization of crude oil. J Appl Microbiol 23:1082-089
    16. Lazar I, Voicu A, Nicolescu C, Mucenica D, Dobrota S, Petrisor IG, Stefanescu M, Sandulescu L (1999) The use of naturally occurring selectively isolated bacteria for inhibiting paraffin deposition. J Pet Sci Technol Eng 22:161-69 CrossRef
    17. Li HY, Zhang JJ (2003) Comparison of different methods on determining wax appearance temperature of crude oils. Oil Gas Storage Transport 22:28-0
    18. Lotfabada TB, Shourianc M, Roostaazada R, Najafabadi AR, Adelzadeh MR, Noghabi KA (2009) An efficient biosurfactant-producing bacterium / Pseudomonas aeruginosa MR01, isolated from oil excavation areas in south of Iran. Colloids Surf: B 9:183-93 CrossRef
    19. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265-75
    20. Manocha MS, San-Blas G, Centeno S (1980) Lipid composition of / Paracoccidioides brasilienses: possible correlation with virulence of different strains. J Med Microbiol 117:147-54
    21. Margaritis A, Zajic JE, Gerson DF (1979) Production and surface active properties of microbial surfactants. Biotechnol Bioeng 21:1151-162 CrossRef
    22. McInerney MJ, Sublette KL (2002) Oil field microbiology. In: Hurst CJ, Stetzenbach D (eds) Manual of environmental microbiology, 2nd edn. ASM, Washington DC, pp?777-78
    23. Miller GL, Wolin MJ (1974) A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl Environ Microbiol 27:985-87
    24. Nitschke M, Pastore GM (2006) Production and properties of a surfactant obtained from / Bacillus subtilis grown on cassava wastewater. Bioresour Technol 97:336-41 CrossRef
    25. Pruthi V, Cameotra SS (2003) Effect of nutrients on optimal production of biosurfactants by / Pseudomonas putida-a Gujarat oil field isolate. J Surfactants Deterg 6(01):65-8 CrossRef
    26. Reddy CM, Quinn JG (1997) Environmental chemistry of benzothiazoles derived from rubber.Environ Sci Technol 31:2847-853
    27. Robert M, Mercade ME, Bosch MP, Parra JL, Espuny MJ, Manresa MA, Guinea J (1989) Effect of the carbon source on biosurfactant production by / Pseudomonas aerugonosa 44Ti. Biotechnol Lett 11(12):871-74 CrossRef
    28. Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11(10):2477-490 CrossRef
    29. R?ling WFM, Head IM, Larter SR (2003) The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Res Microbiol 154(05):321-28 CrossRef
    30. Rosenberg M (1984) Bacterial adherence to hydrocarbons: a useful technique for studying cell surface hydrophobicity. FEMS Microbiol Lett 22(03):289-95 CrossRef
    31. Sadeghazad A, Ghaemi N (2003) Microbial prevention of wax precipitation in crude oil by biodegradation mechanism. Soc Pet Eng SPE 80529:1-1
    32. Salminen JM, Tuomi PM, Suortti A-M, J?rgensen KS (2004) Potential for aerobic and anaerobic biodegradation of petroleum hydrocarbons in boreal subsurface. Biodegradation 15:29-9
    33. Sanchez G, Marin A, Vierma L (1992) Isolation of thermophilic bacteria from a Venezuelan oil field. In: Premuzic ET, Woodhead A (eds) Microbial enhancement of oil recovery—recent advances. Proceedings of the (1992) International Conference. Elsevier, Amsterdam, pp?383-89
    34. Siddique T, Fedorak PM, Foght JM (2006) Biodegradation of short-chain n-alkanes in oil sands tailings under methanogenic conditions. Environ Sci Technol 40(17):5459-464 CrossRef
    35. Sousa DZ, Smidt H, Alves MM, Stams AJM (2009) Ecophysiology of syntrophic communities that degrade saturated and unsaturated long-chain fatty acids. FEMS Microbiol Ecol 68(03):257-72 CrossRef
    36. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary geneticsanalysis (MEGA) software version 4.0. Mol Biol Evol 24(08):1596-599 CrossRef
    37. Todd Townsend G, Prince RC, Suflita JM (2003) Anaerobic oxidation of crude oil hydrocarbons by the resident microorganisms of a contaminated anoxic aquifer. Environ Sci Technol 37(22):5213-218 CrossRef
    38. Vasileva Tonkova E, Gesheva V (2007) Biosurfactant production by antarctic facultative anaerobe / Pantoea sp. during growth on hydrocarbons. Curr Microbiol 54:136-41 CrossRef
    39. Winker S, Woese CR (1991) A definition of the domain Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 14:161-65 CrossRef
    40. Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface / Bacillus licheniformis BAS50. Appl Environ Microbiol 61:1706-713
    41. Yan F, Xie YJ (2009) Investigation on separation of four fractions and interfacial properties of DaQing crude oil. Chem Anal Meterage 18:20-4
    42. Yin H, Qiang J, Jia Y, Ye JS, Peng H, Qin HM, Zhang N, He BY (2009) Characteristics of biosurfactant produced by / Pseudomonas aeruginosa S6 isolated from oilcontaining wastewater. Process Biochem 44:324-31 CrossRef
    43. Youssef N, Simposn DR, Duncan KE, McInerney MJ, Folmsbee M, Fincher T, Knapp RM (2007) In situ biosurfactant production by / Bacillus strains injected into a limestone petroleum reservoir. Appl Environ Microbiol 73:1239-247 CrossRef
    44. Zengler K, Richnow HH, Michaelis W, Rosselló-Mora R, Widdel F (1999) Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266-69 CrossRef
  • 作者单位:Xia Wenjie (1) (2)
    Yu Li (1)
    Wang Ping (1)
    Xiu Jianlong (1)
    Dong Hanping (1)

    1. Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, LangFang, China
    2. Shenliu, Mailbox #44, Langfang City, Hebei Province, China
  • ISSN:1869-2044
文摘
A strain isolated from the oil reservoir in northern China was identified as Geobacillus pallidus by 16S rRNA gene sequencing. It could grow at a temperature of 45-0°C and salinity of 0-5% (w/v) and synthesize biosurfactant by using crude oil as sole carbon source under aerobic or anaerobic conditions. The yields of biosurfactant were?≈-.8?g/L and?≈-.8?g/L, respectively. Compositional analysis revealed that the fractionated components and compositions of the purified biosurfactant differed between aerobic (glycosides?≈-0.3%, lipids?≈-4.5%, peptide?≈-5.2%, w/w) and anaerobic (glycosides?≈-3.8%, lipids?≈-1.2%, peptide?≈-6.0%, w/w) conditions. The critical micelle concentrations of aerobic and anaerobic biosurfactant were 0.016?g/L and 0.022?g/L, respectively. Gas chromatography analysis indicated that strain H9 had a preference for utilizing medium- and long-length alkanes (C23–C43) under aerobic conditions, and degrading long alkanes (C33–C43) under anaerobic conditions. Physical simulation results showed that strain H9 and its biosurfactant have great potential use in microbial enhanced oil recovery, especially in high temperature and salinity oil reservoirs.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700