Thermal expansion behaviors of Mn(II)-pyridylbenzoate frameworks based on metal-carboxylate chains
详细信息    查看全文
  • 作者:HaoLong Zhou (1)
    Mian Li (2)
    Dan Li (2)
    JiePeng Zhang (1)
    XiaoMing Chen (1)
  • 关键词:coordination polymer ; thermal expansion ; framework flexibility ; topology
  • 刊名:SCIENCE CHINA Chemistry
  • 出版年:2014
  • 出版时间:March 2014
  • 年:2014
  • 卷:57
  • 期:3
  • 页码:365-370
  • 全文大小:947 KB
  • 参考文献:1. Kitagawa S, Kitaura R, Noro S. Functional porous coordination polymers. / Angew Chem Int Ed, 2004, 43(18): 2334鈥?375 CrossRef
    2. Zhou HC, Long JR, Yaghi OM. Introduction to metal-organic frameworks. / Chem Rev, 2012, 112(2): 673鈥?74 CrossRef
    3. Li JR, Kuppler RJ, Zhou HC. Selective gas adsorption and separation in metal-organic frameworks. / Chem Soc Rev, 2009, 38(5): 1477鈥?504 CrossRef
    4. Yoon M, Srirambalaji R, Kim K. Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. / Chem Rev, 2012, 112(2): 1196鈥?231 CrossRef
    5. Cui Y, Yue Y, Qian G, Chen B. Luminescent functional metalorganic frameworks. / Chem Rev, 2012, 112(2): 1126鈥?162 CrossRef
    6. Kreno LE, Leong K, Farha OK, Allendorf M, Van Duyne RP, Hupp JT. Metal-organic framework materials as chemical sensors. / Chem Rev, 2012, 112(2): 1105鈥?125 CrossRef
    7. Cohen SM. Modifying mofs: New chemistry, new materials. / Chem Sci, 2010, 1(1): 32鈥?6 CrossRef
    8. Yin Z, Zeng MH. Recent advance in porous coordination polymers from the viewpoint of crystalline-state transformation. / Sci China Chem, 2011, 54(9): 1371鈥?394 CrossRef
    9. Goodwin AL, Chapman KW, Kepert CJ. Guest-dependent negative thermal expansion in nanoporous Prussian Blue analogues MIIPtIV (CN)6路 / x{H2O} (0 鈮? / x 鈮?2; M = Zn, Cd). / J Am Chem Soc, 2005, 127(51): 17980鈥?7981 CrossRef
    10. Dubbeldam D, Walton KS, Ellis DE, Snurr RQ. Exceptional negative thermal expansion in isoreticular metal-organic frameworks. / Angew Chem Int Ed, 2007, 46(24): 4496鈥?499 CrossRef
    11. Goodwin AL, Calleja M, Conterio MJ, Dove MT, Evans JSO, Keen DA, Peters L, Tucker MG., Colossal positive and negative thermal expansion in the framework material Ag3[Co(CN)6]. / Science, 2008, 319(5864): 794鈥?97 CrossRef
    12. Phillips AE, Goodwin AL, Halder GJ, Southon PD, Kepert CJ. Nanoporosity and exceptional negative thermal expansion in single-network cadmium cyanide. / Angew Chem Int Ed, 2008, 47(8): 1396鈥?399 CrossRef
    13. Yang C, Wang XP, Omary MA. Crystallographic observation of dynamic gas adsorption sites and thermal expansion in a breathable fluorous metal-organic framework. / Angew Chem Int Ed, 2009, 48(14): 2500鈥?505 CrossRef
    14. Wu Y, Kobayashi A, Halder GJ, Peterson VK, Chapman KW, Lock N, Southon PD, Kepert CJ. Negative thermal expansion in the metal-organic framework material Cu3(1,3,5-benzenetricarboxylate)2. / Angew Chem Int Ed, 2008, 47(46): 8929鈥?932 CrossRef
    15. Korcok JL, Katz MJ, Leznoff DB. Impact of metallophilicity on 鈥渃olossal鈥?positive and negative thermal expansion in a series of isostructural dicyanometallate coordination polymers. / J Am Chem Soc, 2009, 131(13): 4866鈥?871 CrossRef
    16. DeVries LD, Barron PM, Hurley EP, Hu CH, Choe W. 鈥淣anoscale lattice fence鈥?in a metal-organic framework: Interplay between hinged topology and highly an isotropic thermal response. / J Am Chem Soc, 2011, 133(38): 14848鈥?4851 CrossRef
    17. Ogborn JM, Collings IE, Moggach SA, Thompson AL, Goodwin AL. Supramolecular mechanics in a metal-organic framework. / Chem Sci, 2012, 3(10): 3011鈥?017 CrossRef
    18. Wei YS, Chen KJ, Liao PQ, Zhu BY, Lin RB, Zhou HL, Wang BY, Xue W, Zhang JP, Chen XM. Turning on the flexibility of isoreticular porous coordination frameworks for drastically tunable framework breathing and thermal expansion. / Chem Sci, 2013, 4(4): 1539鈥?546 CrossRef
    19. Grobler I, Smith VJ, Bhatt PM, Herbert SA, Barbour LJ. Tunable anisotropic thermal expansion of a porous zinc(ii) metal-organic framework. / J Am Chem Soc, 2013, 135(17): 6411鈥?414 CrossRef
    20. Zhou HL, Lin RB, He CT, Zhang YB, Feng N, Wang Q, Deng F, Zhang JP, Chen XM. Direct visualization of a guest-triggered crystal deformation based on a flexible ultramicroporous framework. / Nat Commun, 2013, 4: 2534
    21. Tipler PA, Mosca G. Physics for scientists and engineers, sixth edition. Secondary Physics for Scientists and Engineers, 6th ed., 2008, 1: 666鈥?70
    22. Das D, Jacobs T, Barbour LJ. Exceptionally large positive and negative anisotropic thermal expansion of an organic crystalline material. / Nat Mat, 2010, 9(1): 36鈥?9 CrossRef
    23. Browne WR, Feringa BL. Making molecular machines work. / Nat Nanotechnol, 2006, 1(1): 25鈥?5 CrossRef
    24. Evans JSO. Negative thermal expansion materials. / J Chem Soc Dalton, 1999, 19: 3317鈥?326 CrossRef
    25. Goodwin AL, Kepert CJ. Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials. / Phys Rev B, 2005, 71: 140301(R) CrossRef
    26. Gong Y, Pauls HW. A convenient synthesis of heteroaryl benzoic acids via suzuki reaction. / Synlett, 2000, 6: 829鈥?31
    27. Guo F. Hydrothermal syntheses and crystal structures of two new three-dimensional coordination polymers based on 4-pyrid-3-ylbenzoic acid. / Z Anorg Allg Chem, 2010, 636(5): 857鈥?60 CrossRef
    28. O鈥橩eeffe M, Yaghi OM. Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. / Chem Rev, 2012, 112(2): 675鈥?02 CrossRef
    29. Yan Z, Li M, Gao HL, Huang XC, Li D. High-spin versus spin-crossover versus low-spin: Geometry intervention in cooperativity in a 3d polymorphic iron(ii)-tetrazole mofs system. / Chem Commun, 2012, 48(33): 3960鈥?962 CrossRef
    30. Cliffe MJ, Goodwin AL. / PASCal: A principal axis strain calculator for thermal expansion and compressibility determination. / J Appl Cryst, 2012, 45(6): 1321鈥?329 CrossRef
    31. Ferey G, Serre C. Large breathing effects in three-dimensional porous hybrid matter: Facts, analyses, rules and consequences. / Chem Soc Rev, 2009, 38(5): 1380鈥?399 CrossRef
  • 作者单位:HaoLong Zhou (1)
    Mian Li (2)
    Dan Li (2)
    JiePeng Zhang (1)
    XiaoMing Chen (1)

    1. MOE Key Laboratory of Bioinorganic and Synthetic Chemistry; School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou, 510275, China
    2. Department of Chemistry, Shantou University, Shantou, 515063, China
  • ISSN:1869-1870
文摘
Solvothermal reactions of MnCl2 with pyridylbenzoic acids gave three-dimensional metal-carboxylate frameworks (MCFs), named MCF-34, MCF-43, and MCF-44, based on one-dimensional Mn-carboxylate chains. The crystal structure, stability, porosity, and framework flexibility of the new compound MCF-44 were studied in detail and compared with its analogs. Depending on their shapes and the bridging angles of the ligands, these compounds possess different network connectivities and porosities. Considering the pyridylbenzote ligands and Mn(II) ions as, respectively, 3- and 6-connected nodes, they resemble either the anatase (ant) or rutile (rtl) polymorph of TiO2. Variable-temperature single-crystal X-ray diffraction studies revealed large thermal expansion coefficients for these compounds, which are probably related to the relatively flexible edge-sharing polyhedral structure of their Mn-carboxylate chains. Interestingly, the new compound MCF-44, with its highly porous rtl structure exhibits the largest thermal expansion coefficienct among the coordination polymers reported so far.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700