Data Pre-Processing in Compressive Sensing Based Indoor Fingerprinting Positioning
详细信息    查看全文
文摘
Presented is a novel compressive sensing (CS) based indoor positioning approach, which uses the signal strength differentials (SSDs) as location fingerprints (LFs). By using certain kernel-based transformation basis, the 2-D target location is represented as an unknown sparse location vector in the discrete spatial domain. Then it just takes a little number of online noisy SSD measurements for the exact recovery of the sparse location vector by solving an ?1-minimization program. In order to effectively apply CS theory for high precision indoor positioning, we further import some data pre-processing algorithms in the LF space. Firstly, to mitigate the influence of large measurements noise on the recovery accuracy, a LF space denosing algorithm is designed to discriminate the unequal localization contribution rate of every SSD measurement in each LF. The basic idea of the denosing algorithm is to transform the original LF space into a robust and decorrelated LF space. Moreover, in order to lower the high computational complexity of the CS recovery algorithm, several LF space filtering algorithms are also exploited to remove certain percentage of useless LFs in the radio map according to the real-time RSS observations. The performance of these denosing and filtering algorithms are investigated and compared in real-world WLAN experiment test. Both experimental results and simulations demonstrate that we achieve remarkable improvements on the positioning performance of the CS based localization by using the proposed algorithms.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700