Reduced-order modeling of human body for brain hypothermia treatment
详细信息    查看全文
  • 作者:Jinhua She ; Hiroshi Hashimoto ; Min Wu
  • 关键词:Balanced realization ; brain hypothermia treatment (BHT) ; minimal realization ; model reduction ; human thermal sensation ; thermal model
  • 刊名:International Journal of Automation and Computing
  • 出版年:2016
  • 出版时间:April 2016
  • 年:2016
  • 卷:13
  • 期:2
  • 页码:159-167
  • 全文大小:718 KB
  • 参考文献:[1]A. K. Gupta, P. G. Al-Rawi, P. J. Hutchinson, P. J. Kirkpatrick. Effect of hypothermia on brain tissue oxygenation in patients with severe head injury. British Journal of Anaesthesia, vol. 88, no. 2, pp. 188–192, 2002.CrossRef
    [2]A. R. Davies. Hypothermia improves outcome from traumatic brain injury. Critical Care and Resuscitation, vol.7, no. 3, pp. 238–243, 2005.
    [3]K. R. Diller, L. Zhu. Hypothermia therapy for brain injury. Annual Review of Biomedical Engineering, vol. 11, no. 1, pp. 135–162, 2009.CrossRef
    [4]M. A. Peberdy, C. W. Callaway, R.W. Neumar, R. G. Geocadin, J. L. Zimmerman, M. Donnino, A. Gabrielli, S. M. Silvers, A. L. Zaritsky, R. Merchant, T. L. Vanden Hoek, S. L. Kronick. Part 9: Post-cardiac arrest care: 2010 American heart association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care. Circulation, vol. 122 no. 18, pp. S768–S786, 2010.CrossRef
    [5]F. Sadaka, C. Veremakis, R. Lakshmanan, A. Palagiri. Therapeutic Hypothermia in Traumatic Brain Injury, In-Tech, 2013.CrossRef
    [6]G. L. Clifton, A. Valadka, D. Zygun, C. S. Coffey, P. Drever, S. Fourwinds, L. S. Janis, E. Wilde, P. Taylor, K. Harshman, A. Conley, A. Puccio, H. S. Levin, S. R. McCauley, R. D. Bucholz, K. R. Smith, J. H. Schmidt, J. N. Scott, H. Yonas, D. O. Okonkwo. Very early hypothermia induction in patients with severe brain injury (the National Acute Brain Injury Study: Hypothermia II): A randomised trial. The Lancet Neurology, vol. 10, no. 2, pp. 131–139, 2011.CrossRef
    [7]P. J. D. Andrews, H. L. Sinclair, C. G. Battison, K. H. Polderman, G. Citerio, L. Mascia, B. A. Harris, G. D. Murray, N. Stocchetti, D. K.Menon, H. Shakur, D. De Backer. European society of intensive care medicine study of therapeutic hypothermia (32–35°C) for intracranial pressure reduction after traumatic brain injury (the Eurotherm3235Trial). Trials, 2011.
    [8]A. Gibson, P. J. D. Andrews. Therapeutic Hypothermia, Still “Too Cool to be True?”, F1000Prime Reports, 2013.
    [9]M. M. Paulides, P. R. Staufffer, E. Neufeld, P. F. Maccarini, A. Kyriakou, R. A. M. Canters, C. J. Diederich, J. F. Bakker, G. C. Van Rhoon. Simulation techniques in hyperthermia treatment planning. International Journal of Hyperthermia, vol. 29, no. 4, pp. 346–357, 2013.CrossRef
    [10]P. Prakash, V. A. Salgaonkar, C. J. Diederich. Modelling of endoluminal and interstitial ultrasound hyperthermia and thermal ablation: Applications for device design, feedback control, and treatment planning. International Journal of Hyperthermia, vol. 29, no. 4, pp. 296–307, 2013.CrossRef
    [11]Y. H. Chiok, E. Y. K. Ng, V. V. Kulish. Global bioheat model for quick evaluation of the human physiological thermal profiles under differing conditions. Journal of Medical Engineering & Technology, vol. 26, no. 6, pp. 231–238, 2002.CrossRef
    [12]M. M. Paulides, J. F. Bakker, M. Linthorst, J. van der Zee, Z. Rijnen, E. Neufeld, P. M. T. Pattynama, P. P. Jansen, P. C. Levendag, G. C. van Rhoon. The clinical feasibility of deep hyperthermia treatment in the head and neck: New challenges for positioning and temperature measurement. Physics in Medicine and Biology, vol. 55, no. 9, pp. 2465–2480, 2010.CrossRef
    [13]S. Takada, H. Kobayashi, T. Matsushita. Thermal model of human body fitted with individual characteristics of body temperature regulation. Building and Environment, vol. 44, no. 3, pp. 463–470, 2009.CrossRef
    [14]J. K. Potocki, H. S. Tharp. Reduced-order modeling for hyperthermia control. IEEE Transactions on Biomedical Engineering, vol. 39, no. 12, pp. 1265–1273, 1992.CrossRef
    [15]H. Wakamatsu, G. H. Lu. Biothermal model of patient for brain hypothermia treatment. IEEJ Transactions on Electronics Information and Systems, vol. 123, no. 9, pp. 1537–1546, 2003. (in Japanese)CrossRef
    [16]H. Wakamatsu, G. H. Lu. Adaptive control of brain temperature for brain hypothermia treatment using Stolwijk-hardy model. Artificial Life and Robotics, vol. 8, no. 2, pp. 214–221, 2004.CrossRef
    [17]H. Wakamatsu, T. Wakatsuki, T. Utsuki. Experimental qualification of automatic fuzzy control systems of brain temperature in clinical hypothermia treatment using a human thermal model. Japanese Journal of Clinical Physiology, vol. 36, no. 6, pp. 289–296, 2006.
    [18]H. Wakamatsu, T. Utsuki, C. Mitaka, K. Ohno. Clinical system engineering of long-term automatic thermal control during brain hypothermia under changing conditions. Technology and Health Care, vol. 18, no. 3, pp. 181–201, 2010.
    [19]J. H. She, H. Hashimoto, Q. Lei, M. Wu. Construction of reduced-order biothermal model of human body for brain hypothermia. In Proceedings of the 24th International Symposium on Industrial Electronics, IEEE, Buzios, Brazil, pp. 952–957, 2015.
    [20]H. H. Pennes. Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, vol. 1, no. 2, pp. 93–122, 1948.
    [21]M. Mattingly, E. A. Bailey, A.W. Dutton, R. B. Rocmer, S. Devasia. Reduced-order modeling for hyperthermia: An extended balanced-realization-based approach. IEEE Transactions on Biomedical Engineering, vol. 45, no. 9, pp. 1154–1162, 1998.CrossRef
    [22]A. J. Laub, M. T. Heath, C. C. Paige, R. C. Ward. Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms. IEEE Transactions on Automatic Control, vol. 32, no. 2, pp. 115–122, 1987.CrossRef MATH
    [23]Math Works. Control System Toolbox TM User’s Guide, Natick, MA, 2015.
    [24]K. M. Zhou, J. C. Doyel, K. Glover. Robust and Optimal Control, New York, USA: Prentice Hall, 1996.
    [25]B. De Schutter. Minimal state-space realization in linear system theory: An overview. Journal of Computational and Applied Mathematics, vol. 121, no. 1–2, pp. 331–354, 2000.MathSciNet CrossRef MATH
    [26]J. W. Ring, R. de Dear, A. Melikov. Human thermal sensation: Frequency response to sinusoidal stimuli at the surface of the skin. Energy and Buildings, vol. 20, no. 2, pp. 159–165, 1993.CrossRef
    [27]S. Tanabe, J. Nakano, K. Kobayashi. Development of 65-node thermoregulation-model for evaluation of thermal environment. Journal of Architecture, Planning and Environmental Engineering, vol. 541, pp. 9–16, 2001. (in Japanese)
    [28]G. J. Monkman, P. M. Taylor. Thermal tactile sensing. IEEE Transactions on Robotics and Automation, vol.9, no. 3, pp. 313–318, 1993.CrossRef
    [29]R. Daghigh, N. M. Adam, B. Saharib. The effect of air exchange rate on human thermal comfort in an airconditioned office under different opening arrangements. European Journal of Scientific Research, vol. 25 no. 2, pp. 174–191, 2009.
    [30]K. R. Foster, E. R. Adair. Modeling thermal responses in human subjects following extended exposure to radiofrequency energy. BioMedical Engineering OnLine, 2004.
  • 作者单位:Jinhua She (1) (2)
    Hiroshi Hashimoto (3)
    Min Wu (2)

    1. School of Engineering, Tokyo University of Technology, Tokyo, 192-0982, Japan
    2. School of Automation, China University of Geosciences, Wuhan, 430074, China
    3. Master Program of Innovation for Design & Engineering, Advanced Institute of Industrial Technology Shinagawa-ku, Tokyo, 140-0011, Japan
  • 刊物类别:Engineering
  • 刊物主题:Automation and Robotics
    Computer Applications
    Computer-Aided Engineering and Design
    Chinese Library of Science
  • 出版者:Institute of Automation, Chinese Academy of Sciences, co-published with Springer-Verlag GmbH
  • ISSN:1751-8520
文摘
Brain hypothermia treatment (BHT) is an active therapy for severe brain injury. It makes the temperature of the brain track a given temperature input curve so as to reduce the risk of tissue damage. BHT requires a brain-temperature control system because of environmental disturbances and changes in the human body. The thermal models of the human body devised so far are usually of a very high order and are not suitable for controlling brain temperature. This paper presents a method of finding a reducedorder thermal model of the human body for use in BHT. It combines minimal realization and balanced realization. Unlike other methods, this method yields a reduced-order model that is based on system theory and that takes the frequency characteristics of human thermal sensation into account. It features high precision in the frequency band for BHT and is suitable for the control of brain temperature.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700