Efficient production of indigoidine in Escherichia coli
详细信息    查看全文
  • 作者:Fuchao Xu ; David Gage ; Jixun Zhan
  • 关键词:Indigoidine ; Glutamine synthetase ; Metabolic engineering ; Escherichia coli ; Streptomyces chromofuscus ; Substrate feeding
  • 刊名:Journal of Industrial Microbiology and Biotechnology
  • 出版年:2015
  • 出版时间:August 2015
  • 年:2015
  • 卷:42
  • 期:8
  • 页码:1149-1155
  • 全文大小:1,303 KB
  • 参考文献:1.Blattner FR, Plunkett G 3rd, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453-462PubMed View Article
    2.Brachmann AO, Kirchner F, Kegler C, Kinski SC, Schmitt I, Bode HB (2012) Triggering the production of the cryptic blue pigment indigoidine from Photorhabdus luminescens. J Biotechnol 157:96-9PubMed View Article
    3.Cude WN, Mooney J, Tavanaei AA, Hadden MK, Frank AM, Gulvik CA, May AL, Buchan A (2012) Production of the antimicrobial secondary metabolite indigoidine contributes to competitive surface colonization by the marine roseobacter Phaeobacter sp. strain Y4I. Appl Environ Microbiol 78:4771-780PubMed Central PubMed View Article
    4.Eisenberg D, Gill HS, Pfluegl GM, Rotstein SH (2000) Structure-function relationships of glutamine synthetases. Biochim Biophys Acta 1477:122-45PubMed View Article
    5.Etters JN (1991) New developments in indigo dyeing of cotton denim yarn. Colourage Annu 37:39-2
    6.Hayashi M, Tabata K (2013) Metabolic engineering for l -glutamine overproduction by using DNA gyrase mutations in Escherichia coli. Appl Environ Microbiol 79:3033-039PubMed Central PubMed View Article
    7.Liaw SH, Kuo I, Eisenberg D (1995) Discovery of the ammonium substrate site on glutamine synthetase, a third cation binding site. Protein Sci 4:2358-365PubMed Central PubMed View Article
    8.Lin GH, Chen HP, Huang JH, Liu TT, Lin TK, Wang SJ, Tseng CH, Shu HY (2012) Identification and characterization of an indigo-producing oxygenase involved in indole 3-acetic acid utilization by Acinetobacter baumannii. Antonie Van Leeuwenhoek 101:881-90PubMed View Article
    9.Newsome AG, Culver CA, van Breemen RB (2014) Nature’s palette: the search for natural blue colorants. J Agric Food Chem 62:6498-511PubMed View Article
    10.Novakova R, Odnogova Z, Kutas P, Feckova L, Kormanec J (2010) Identification and characterization of an indigoidine-like gene for a blue pigment biosynthesis in Streptomyces aureofaciens CCM 3239. Folia Microbiol 55:119-25View Article
    11.Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla C (2001) Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science 291:1790-792PubMed View Article
    12.Puchalska M, Polec-Pawlak K, Zadrozna I, Hryszko H, Jarosz M (2004) Identification of indigoid dyes in natural organic pigments used in historical art objects by high-performance liquid chromatography coupled to electrospray ionization mass spectrometry. J Mass Spectrom 39:1441-449PubMed View Article
    13.Reverchon S, Rouanet C, Expert D, Nasser W (2002) Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity. J Bacteriol 184:654-65PubMed Central PubMed View Article
    14.Sezonov G, Joseleau-Petit D, D’Ari R (2007) Escherichia coli physiology in Luria-Bertani broth. J Bacteriol 189:8746-749PubMed Central PubMed View Article
    15.Song J, Imanaka H, Imamura K, Kajitani K, Nakanishi K (2010) Development of a highly efficient indigo dyeing method using indican with an immobilized β-glucosidase from Aspergillus niger. J Biosci Bioeng 110:281-87PubMed View Article
    16.Starr MP, Cosens G, Knackmuss HJ (1966) Formation of the blue pigment indigoidine by phytopathogenic Erwinia. Appl Microbiol 14:870-72PubMed Central PubMed
    17.Takahashi H, Kumagai T, Kitani K, Mori M, Matoba Y, Sugiyama M (2007) Cloning and characterization of a Streptomyces single module type non-ribosomal peptide synthetase catalyzing a blue pigment synthesis. J Biol Chem 282:9073-081PubMed View Article
    18.Travis T (1992) Indigo—putting the blue in blue jeans. Chem Rev 1:2-
    19.Warzecha H, Frank A, Peer M, Gillam EM, Guengerich FP, Unger M (2007) Formation of the indigo precursor indican in genetically engineered tobacco plants and cell cultures. Plant Biotechnol J 5:185-91PubMed View Article
    20.Xia ZQ, Zenk MH (1992) Biosynthesis of indigo precursors in higher plants. Phytochemistry 31:2695-697View Article
    21.Yu D, Xu F, Valiente J, Wang S, Zhan J (2013) An indigoidine biosynthetic gene cluster from Streptomyces chromofuscus ATCC 49982 contains an unusual IndB homologue. J Ind Microbiol Biotechnol 40:159-68PubMed View Article
  • 作者单位:Fuchao Xu (1)
    David Gage (1)
    Jixun Zhan (1)

    1. Department of Biological Engineering, Utah State University, 4105 Old Main Hill, Logan, UT, 84322-4105, USA
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Chemistry
    Biotechnology
    Genetic Engineering
    Biochemistry
    Bioinformatics
    Microbiology
    Microbial Genetics and Genomics
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1476-5535
文摘
Indigoidine is a bacterial natural product with antioxidant and antimicrobial activities. Its bright blue color resembles the industrial dye indigo, thus representing a new natural blue dye that may find uses in industry. In our previous study, an indigoidine synthetase Sc-IndC and an associated helper protein Sc-IndB were identified from Streptomyces chromofuscus ATCC 49982 and successfully expressed in Escherichia coli BAP1 to produce the blue pigment at 3.93?g/l. To further improve the production of indigoidine, in this work, the direct biosynthetic precursor l-glutamine was fed into the fermentation broth of the engineered E. coli strain harboring Sc-IndC and Sc-IndB. The highest titer of indigoidine reached 8.81?±?0.21?g/l at 1.46?g/l?l-glutamine. Given the relatively high price of l-glutamine, a metabolic engineering technique was used to directly enhance the in situ supply of this precursor. A glutamine synthetase gene (glnA) was amplified from E. coli and co-expressed with Sc-indC and Sc-indB in E. coli BAP1, leading to the production of indigoidine at 5.75?±?0.09?g/l. Because a nitrogen source is required for amino acid biosynthesis, we then tested the effect of different nitrogen-containing salts on the supply of l-glutamine and subsequent indigoidine production. Among the four tested salts including (NH4)2SO4, NH4Cl, (NH4)2HPO4 and KNO3, (NH4)2HPO4 showed the best effect on improving the titer of indigoidine. Different concentrations of (NH4)2HPO4 were added to the fermentation broths of E. coli BAP1/Sc-IndC+Sc-IndB+GlnA, and the titer reached the highest (7.08?±?0.11?g/l) at 2.5?mM (NH4)2HPO4. This work provides two efficient methods for the production of this promising blue pigment in E. coli.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700