Extensive diversity of Rickettsiales bacteria in two species of ticks from China and the evolution of the Rickettsiales
详细信息    查看全文
  • 作者:Yan-Jun Kang (1) (2)
    Xiu-Nian Diao (3)
    Gao-Yu Zhao (1)
    Ming-Hui Chen (4)
    Yanwen Xiong (1) (2)
    Mang Shi (1) (5)
    Wei-Ming Fu (4)
    Yu-Jiang Guo (3)
    Bao Pan (3)
    Xiao-Ping Chen (1) (2)
    Edward C Holmes (1) (5)
    Joseph J Gillespie (6)
    Stephen J Dumler (6)
    Yong-Zhen Zhang (1) (2)

    1. Department of Zoonoses
    ; State Key Laboratory for Infectious Disease Prevention and Control ; National Institute for Communicable Disease Control and Prevention ; Chinese Center for Disease Control and Prevention ; Changping Liuzi 5 ; Beijing ; 102206 ; China
    2. Center for Diagnosis and Treatment of Infectious Diseases
    ; Hangzhou ; China
    3. Veterinary Station
    ; Jiulingtuan of Nongwushi ; Bole ; Xinjiang Uygur Autonomous Region ; China
    4. Veterinary Station
    ; Emin ; Nongjiushi ; Xinjiang Uygur Autonomous Region ; China
    5. Marie Bashir Institute for Infectious Diseases and Biosecurity
    ; Charles Perkins Centre ; School of Biological Sciences and Sydney Medical School ; The University of Sydney ; Sydney ; Australia
    6. Departments of Pathology and Microbiology & Immunology
    ; University of Maryland School of Medicine ; Baltimore ; MD ; USA
  • 关键词:Co ; divergence ; Evolution ; Phylogeny ; Rickettsiales bacteria ; Ticks ; Vectors
  • 刊名:BMC Evolutionary Biology
  • 出版年:2014
  • 出版时间:December 2014
  • 年:2014
  • 卷:14
  • 期:1
  • 全文大小:2,523 KB
  • 参考文献:Raoult, D, Parola, P eds. (2007) Rickettsial Diseases. Informa Healthcare, London
    1. Kelly, DJ, Richards, AL, Temenak, JJ, Strickman, D, Dasch, GA (2002) The past and present threat of rickettsial diseases to military medicine and international public health. Clin Infect Dis 34: pp. s145-s169 CrossRef
    2. Tamura, A, Ohashi, N, Urakami, H, Miyamura, S (1995) Classification of Rickettsia tsutsugamushi in a new genus, Orientia gen. nov., as Orientia tsutsugamushi comb. nov. Int J Syst Bacteriol 45: pp. 589-591 CrossRef
    3. Zhang, L, Liu, Y, Ni, D, Li, Q, Yu, Y, Yu, XJ, Wan, K, Li, D, Liang, G, Jiang, X, Jing, H, Run, J, Luan, M, Fu, X, Zhang, J, Yang, W, Wang, Y, Dumler, JS, Feng, Z, Ren, J, Xu, J (2008) Nosocomial transmission of human granulocytic anaplasmosis in China. JAMA 300: pp. 2263-2270 CrossRef
    4. Weinert, LA, Werren, JH, Aebi, A, Stone, GN, Jiggins, FM (2009) Evolution and diversity of Rickettsia bacteria. BMC Biol 7: pp. 6 CrossRef
    5. Merhej, V, Raoult, D (2011) Rickettsial evolution in the light of comparative genomics. Biol Rev Camb Philos Soc 86: pp. 379-405 CrossRef
    6. Pritt, BS, Sloan, LM, Johnson, DK, Munderloh, UG, Paskewitz, SM, McElroy, KM, McFadden, JD, Binnicker, MJ, Neitzel, DF, Liu, G, Nicholson, WL, Nelson, CM, Franson, JJ, Martin, SA, Cunningham, SA, Steward, CR, Bogumill, K, Bjorgaard, ME, Davis, JP, McQuiston, JH, Warshauer, DM, Wilhelm, MP, Patel, R, Trivedi, VA, Eremeeva, ME (2011) Emergence of a new pathogenic Ehrlichia species, Wisconsin and Minnesota, 2009. N Engl J Med 365: pp. 422-429 CrossRef
    7. Gillespie, JJ, Nordberg, EK, Azad, AF, Sobral, BW Phylogeny and Comparative Genomics: The Shifting Landscape in the Genomics Era. In: Azad, AF, Palmer, GH eds. (2012) Intracellular Pathogens II: Rickettsiales. American Society of Microbiology Press, Herndon, Virginia, US
    8. Rar, V, Golovljova, I (2011) Anaplasma, Ehrlichia, and 鈥淐andidatus Neoehrlichia鈥?bacteria: pathogenicity, biodiversity, and molecular genetic characteristics, a review. Infect Genet Evol 11: pp. 1842-1861 CrossRef
    9. Vaughan, JA, Tkach, VV, Greiman, SE (2012) Neorickettsial endosymbionts of the digenea: diversity, transmission and distribution. Adv Parasitol 79: pp. 253-297
    10. Driscoll, T, Gillespie, JJ, Nordberg, EK, Azad, AF, Sobral, BW (2013) Bacterial DNA sifted from the Trichoplax adhaerens Animalia: Placozoa genome project reveals a putative rickettsial endosymbiont. Genome Biol Evol 5: pp. 621-645 CrossRef
    11. Brenner, DJ, O鈥機onnor, SP, Winkler, HH, Steigerwalt, AG (1993) Proposals to unify the genera Bartonella and Rochalimaea, with descriptions of Bartonella quintana comb. nov., Bartonella vinsonii comb. nov., Bartonella henselae comb. nov., and Bartonella elizabethae comb. nov., and to remove the family Bartonellaceae from the order Rickettsiales. Int J Syst Bacteriol 43: pp. 777-786 CrossRef
    12. Dumler, JS, Barbet, AF, Bekker, CP, Dasch, GA, Palmer, GH, Ray, SC, Rikihisa, Y, Rurangirwa, FR (2001) Reorganization of genera in the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales: unification of some species of Ehrlichia with Anaplasma, Cowdria with Ehrlichia and Ehrlichia with Neorickettsia, descriptions of six new species combinations and designation of Ehrlichia equi and 鈥楬GE agent鈥?as subjective synonyms of Ehrlichia phagocytophila. Int J Syst Evol Microbiol 51: pp. 2145-2165 CrossRef
    13. Montagna, M, Sassera, D, Epis, S, Bazzocchi, C, Vannini, C, Lo, N, Sacchi, L, Fukatsu, T, Petroni, G, Bandi, C (2013) 鈥淐andidatus Midichloriaceae鈥?fam. nov. Rickettsiales, an ecologically widespread clade of intracellular Alphaproteobacteria. Appl Environ Microbiol 79: pp. 3241-3248 CrossRef
    14. Perlman, SJ, Hunter, MS, Zchori-Fein, E (2006) The emerging diversity of Rickettsia. Proc Biol Sci 273: pp. 2097-2106 CrossRef
    15. Darby, AC, Cho, NH, Fuxelius, HH, Westberg, J, Andersson, SG (2007) Intracellular pathogens go extreme: genome evolution in the Rickettsiales. Trends Genet 23: pp. 511-520 CrossRef
    16. Renvois茅, A, Merhej, V, Georgiades, K, Raoult, D (2011) Intracellular Rickettsiales: Insights into manipulators of eukaryotic cells. Trends Mol Med 17: pp. 573-583 CrossRef
    17. Gillespie, JJ, Beier, MS, Rahman, MS, Ammerman, NC, Shallom, JM (2007) Plasmids and rickettsial evolution: insight from Rickettsia felis. PLoS One 2: pp. e266 CrossRef
    18. Walker, DH, Ismail, N (2008) Emerging and re-emerging rickettsioses: endothelial cell infection and early disease events. Nat Rev Microbiol 6: pp. 375-386 CrossRef
    19. Azad, AF, Beard, CB (1984) Rickettsial pathogens and their arthropod vectors. Emerg Infect Dis 4: pp. 179-186 CrossRef
    20. Toft, C, Andersson, SG (2010) Evolutionary microbial genomics: Insights into bacterial host adaptation. Nat Rev Genet 11: pp. 465-475 CrossRef
    21. Wu, XB, Na, RH, Wei, SS, Zhu, JS, Peng, HJ (2013) Distribution of tick-borne diseases in China. Parasit Vectors 6: pp. 119 CrossRef
    22. Chahan, B, Jian, Z, Xuan, X, Sato, Y, Kabeya, H, Tuchiya, K, Itamoto, K, Okuda, M, Mikami, T, Maruyama, S, Inokuma, H (2005) Serological evidence of infection of Anaplasma and Ehrlichia in domestic animals in Xinjiang Uygur Autonomous Region area, China. Vet Parasitol 134: pp. 273-278 CrossRef
    23. Sun, X, Zhang, GL, Liu, XM, Zhao, Y, Zheng, Z (2013) Investigation of tick species and tick-borne pathogens in Hoxud county of Xinjiang Uyghur Autonomous Region, China. Chin J Vector Biology Control 24: pp. 5-7
    24. Lu, X, Lin, XD, Wang, JB, Qin, XC, Tian, JH, Guo, WP, Fan, FN, Shao, R, Xu, J, Zhang, YZ (2013) Molecular survey of hard ticks in endemic areas of tick-borne diseases in China. Ticks Tick Borne Dis 4: pp. 288-296 CrossRef
    25. Garrity, GM, Winters, M, Kuo, AW, Searles, DB (2002) Taxonomic Outline of the Prokaryotes. Bergey鈥檚 Manual of Systematic Bacteriology, 2nd Edn, Volume II Part C. Springer-Verlag, New York, US
    26. Mediannikov, O, Matsumoto, K, Samoylenko, I, Drancourt, M, Roux, V, Rydkina, E, Davoust, B, Tarasevich, I, Brouqui, P, Fournier, PE (2008) Rickettsia raoultii sp. nov., a spotted fever group rickettsia associated with Dermacentor ticks in Europe and Russia. Int J Syst Evol Microbiol 58: pp. 1635-1639 CrossRef
    27. Beati, L, Finidori, JP, Raoult, D (1993) First isolation of Rickettsia slovaca from Dermacentor marginatus in France. Am J Trop Med Hyg 48: pp. 257-268
    28. Anziani, OS, Ewing, SA, Barker, RW (1990) Experimental transmission of a granulocytic form of the tribe Ehrlichieae by Dermacentor variabilis and Amblyomma americanum to dogs. Am J Vet Res 51: pp. 929-931
    29. Steiert, JG, Gilfoy, F (2002) Infection rates of Amblyomma americanum and Dermacentor variabilis by Ehrlichia chaffeensis and Ehrlichia ewingii in southwest Missouri. Vector Borne Zoonotic Dis 2: pp. 53-60 CrossRef
    30. Parola, P, Inokuma, H, Camicas, JL, Brouqui, P, Raoult, D (2001) Detection and identification of spotted fever group Rickettsiae and Ehrlichiae in African ticks. Emerg Infect Dis 7: pp. 1014-1017 CrossRef
    31. Jiang, BG, Cao, WC, Niu, JJ, Wang, JX, Li, HM, Sun, Y, Yang, H, Richadus, JH, Habbema, JD (2011) Detection and identification of Ehrlichia species in Rhipicephalus Boophilus microplus ticks in cattle from Xiamen, China. Vector Borne Zoonotic Dis 11: pp. 325 CrossRef
    32. Groves, MG, Dennis, GL, Amyx, HL, Huxsoll, DL (1975) Transmission of Ehrlichia canis to dogs by ticks Rhipicephalus sanguineus. Am J Vet Res 36: pp. 937-940
    33. Johnson, EM, Ewing, SA, Barker, RW, Fox, JC, Crow, DW, Kocan, KM (1998) Experimental transmission of Ehrlichia canis Rickettsiales: Ehrlichieae by Dermacentor variabilis Acari: Ixodidae. Vet Parasitol 74: pp. 277-288 CrossRef
    34. Jones, RT, McCormick, KF, Martin, AP (2008) Bacterial communities of Bartonella-positive fleas: Diversity and community assembly patterns. Appl Environ Microbiol 74: pp. 1667-1670 CrossRef
    35. Fraune, S, Bosch, TCG (2007) Long-term maintenance of species-specific bacterial microbiota in the basal metazoan Hydra. Proc Natl Acad Sci 10: pp. 13146-13151 CrossRef
    36. Madigan, JE, Pusterla, N, Johnson, E, Chae, JS, Pusterla, JB, Derock, E, Lawler, SP (2000) Transmission of Ehrlichia risticii, the agent of Potomac horse fever, using naturally infected aquatic insects and helminth vectors: preliminary report. Equine Vet J 32: pp. 275-279 CrossRef
    37. Huang, L, Duan, XD, Meng, QL, Li, R, Zhao, QL (2013) Detection of Anaplasma phagocytophilum among sheep in Shihezi, Xinjiang Uyghur Autonomous Region, China and analysis of its 16S rRNA gene sequences. Chin J Vector Biology Control 24: pp. 141-143
    38. Chen, Z, Yang, X, Bu, F, Yang, X, Yang, X, Liu, J (2010) Ticks Acari: Ixodoidea: Argasidae, Ixodidae of China. Exp Appl Acarol 51: pp. 393-404 CrossRef
    39. Fan, MY, Walker, DH, Yu, SR, Liu, QH (1987) Epidemiology and ecology of rickettsial diseases in the People鈥檚 Republic of China. Rev Infect Dis 9: pp. 823-840 CrossRef
    40. Fan, MY, Jiang, YX, Wang, LC, Wang, JG, Lin, YF (1985) Isolation and characterization of tick-borne spotted fever group rickettsia from a patient in Jinghe county of Xinjiang. Chin J Zoonoses 2: pp. 9
    41. Fan, MY, Wang, JG, Jiang, YX, Zong, DG, Lenz, B (1987) Isolation of a spotted fever group rickettsia from a patient and related ecologic investigations in Xinjiang Uygur Autonomous Region of China. J Clin Microbiol 25: pp. 628-632
    42. Tian, ZC, Liu, GY, Shen, H, Xie, JR, Luo, J, Tian, MY (2012) First report on the occurrence of Rickettsia slovaca and Rickettsia raoultii in Dermacentor silvarum in China. Parasit Vectors 5: pp. 19 CrossRef
    43. Raoult, D, Lakos, A, Fenollar, F, Beytout, J, Brouqui, P, Fournier, PE (2002) Spotless rickettsiosis caused by Rickettsia slovaca and associated with Dermacentor ticks. Clin Infect Dis 34: pp. 1331-1336 CrossRef
    44. Ahantarig, A, Trinachartvanit, W, Baimai, V, Grubhoffer, L (2013) Hard ticks and their bacterial endosymbionts (or would be pathogens). Folia Microbiol (Praha) 58: pp. 419-428 CrossRef
    45. Ogata, H, Scola, B, Audic, S, Renesto, P, Blanc, G, Robert, C, Fournier, PE, Claverie, JM, Raoult, D (2006) Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens. PLoS Genet 2: pp. e76 CrossRef
    46. Weisburg, WG, Barns, SM, Pelletier, DA, Lane, DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173: pp. 697-703
    47. Tamura, K, Peterson, D, Peterson, N, Stecher, G, Nei, M, Kumar, S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: pp. 2731-2739 CrossRef
    48. Moretti, S, Wilm, A, Higgins, DG, Xenarios, I, Notredame, C (2008) R-Coffee: a web server for accurately aligning noncoding RNA sequences. Nucleic Acids Res 36: pp. W10-W13 CrossRef
    49. Guindon, S, Dufayard, JF, Lefort, V, Anisimova, M, Hordijk, W, Gascuel, O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59: pp. 307-321 CrossRef
    50. Huelsenbeck, JP, Ronquist, F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: pp. 754-755 CrossRef
    51. Drummond, AJ, Suchard, MA, Xie, D, Rambaut, A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29: pp. 1969-1973 CrossRef
    52. Pagel, M (1999) The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Syst Biol 48: pp. 612-622 CrossRef
    53. Huelsenbeck, JP, Nielsen, R, Bollback, JP (2003) Stochastic mapping of morphological characters. Syst Biol 52: pp. 131-158 CrossRef
    54. Maddison WP, Maddison DR: Mesquite: a modular system for evolutionary analysis. Version 2.75. 2011,http://mesquiteproject.org.
    55. Legendre, P, Desdevises, Y, Bazin, E (2002) A statistical test for host-parasite coevolution. Syst Biol 51: pp. 217-234 CrossRef
    56. Meier-Kolthoff, JP, Auch, AF, Huson, DH, G枚ker, M (2007) COPYCAT: cophylogenetic analysis tool. Bioinformatics 23: pp. 898-900 CrossRef
    57. Jackson, AP, Charleston, MA (2004) A cophylogenetic perspective of RNA-virus evolution. Mol Biol Evol 21: pp. 45-57 CrossRef
  • 刊物主题:Evolutionary Biology; Animal Systematics/Taxonomy/Biogeography; Entomology; Genetics and Population Dynamics; Life Sciences, general;
  • 出版者:BioMed Central
  • ISSN:1471-2148
文摘
Background Bacteria of the order Rickettsiales (Alphaproteobacteria) are obligate intracellular parasites that infect species from virtually every major eukaryotic lineage. Several rickettsial genera harbor species that are significant emerging and re-emerging pathogens of humans. As species of Rickettsiales are associated with an extremely diverse host range, a better understanding of the historical associations between these bacteria and their hosts will provide important information on their evolutionary trajectories and, particularly, their potential emergence as pathogens. Results Nine species of Rickettsiales (two in the genus Rickettsia, three in the genus Anaplasma, and four in the genus Ehrlichia) were identified in two species of hard ticks (Dermacentor nuttalli and Hyalomma asiaticum) from two geographic regions in Xinjiang through genetic analyses of 16S rRNA, gltA, and groEL gene sequences. Notably, two lineages of Ehrlichia and one lineage of Anaplasma were distinct from any known Rickettsiales, suggesting the presence of potentially novel species in ticks in Xinjiang. Our phylogenetic analyses revealed some topological differences between the phylogenies of the bacteria and their vectors, which led us to marginally reject a model of exclusive bacteria-vector co-divergence. Conclusions Ticks are an important natural reservoir of many diverse species of Rickettsiales. In this work, we identified a single tick species that harbors multiple species of Rickettsiales, and uncovered extensive genetic diversity of these bacteria in two tick species from Xinjiang. Both bacteria-vector co-divergence and cross-species transmission appear to have played important roles in Rickettsiales evolution.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700