Experimental investigation and thermodynamic description of the Mg–Y–Zr system
详细信息    查看全文
  • 作者:Kaiming Cheng (1)
    Hua Zhou (1)
    Yong Du (1)
    Shuhong Liu (1)
    Honghui Xu (1)
  • 刊名:Journal of Materials Science
  • 出版年:2014
  • 出版时间:October 2014
  • 年:2014
  • 卷:49
  • 期:20
  • 页码:7124-7132
  • 全文大小:1,838 KB
  • 参考文献:1. Mordike BL, Ebert T (2001) Magnesium: properties–applications-potential. Mater Sci Eng A 302:37-5 CrossRef
    2. Nie JF (2003) Preface to viewpoint set on: phase transformations and deformation in magnesium alloys. Scr Mater 48:981-84 CrossRef
    3. Nie JF, Muddle BC (2000) Characterisation of strengthening precipitate phases in a Mg–Y–Nd alloy. Acta Mater 48:1691-703 CrossRef
    4. Apps PJ, Karimzadeh H, King JF, Lorimer GW (2003) Precipitation reactions in magnesium–rare earth alloys containing yttrium, gadolinium or dysprosium. Scr Mater 48:1023-028 CrossRef
    5. Anthony I, Kamado S, Kojima Y (2001) Aging characteristics and high temperature tensile properties of Mg–Gd–Y–Zr alloys. Mater Trans 42:1206-211 CrossRef
    6. Anthony I, Kamado S, Kojima Y (2001) Creep properties of Mg–Gd–Y–Zr alloys. Mater Trans 42:1212-218 CrossRef
    7. Nie JF, Muddle BC (1999) Precipitation in magnesium alloy WE54 during isothermal ageing at 250?°C. Scr Mater 40:1089-094 CrossRef
    8. Nie JF (2012) Precipitation and hardening in magnesium alloys. Metall Mater Trans A 43A:3891-939 CrossRef
    9. Riontino G, Massazza M, Lussana D, Mengucci P, Barucca G, Ferragut R (2008) A novel thermal treatment on a Mg-.2Y-.3Nd-.6Zr (WE43) alloy. Mater Sci Eng A 494:445-48 CrossRef
    10. Mengucci P, Barucca G, Riontino G et al (2008) Structure evolution of a WE43 Mg alloy submitted to different thermal treatments. Mater Sci Eng A 479:37-4 CrossRef
    11. Zheng KY, Dong J, Zeng XQ, Ding WJ (2008) Effect of pre-deformation on aging characteristics and mechanical properties of a Mg–Gd–Nd–Zr alloy. Mater Sci Eng A 491:103-09 CrossRef
    12. Barucca G, Ferragut R, Fiori F et al (2011) Formation and evolution of the hardening precipitates in a Mg–Y–Nd alloy. Acta Mater 59:4151-158 CrossRef
    13. Agnew SR, Mulay RP, Polesak FJ, Calhoun CA, Bhattacharyya JJ, Clausen B (2013) In situ neutron diffraction and poly plasticity modeling of a Mg–Y–Nd–Zr alloy: effects of precipitation on individual deformation mechanisms. Acta Mater 61:3769-780 CrossRef
    14. Liu H, Gao Y, Liu JZ, Zhu YM, Wang Y, Nie JF (2013) A simulation study of the shape of beta-precipitates in Mg–Y and Mg–Gd alloys. Acta Mater 61:453-66 CrossRef
    15. Berche A, Benigni P, Rogez J, Record MC (2014) Thremodynamic investigations in the solid state of the lanthanum–magnesium–zinc system. Intermetallics 45:46-2 CrossRef
    16. Gr?bner J, Harmpl M, Schmid-Fetzer R et al (2012) Phase analysis of Mg–La–Nd and Mg–La–Ce alloys. Intermetallics 28:92-01 CrossRef
    17. Zhang C, Luo AA, Peng LM, Stone DS, Chang YA (2011) Thermodynamic modeling and experimental investigation of the magnesium–neodymium–zinc alloys. Intermetallics 19:1720-726 CrossRef
    18. Cheng KM, Zhou H, Hu B et al (2014) Experimental investigation and thermodynamic modeling of the Nd–Zr and the Mg–Nd–Zr systems. Metall Mater Trans A 45:2708-718 CrossRef
    19. Kim YD, Kang NH, Jo IG, Kim KH, Kim IB (2008) Aging behavior of Mg–Y–Zr and Mg–Nd–Zr cast alloys. J Mater Sci Technol 24:80-4 CrossRef
    20. Drits ME, Padezhnova EM, Guzey LS (1977) Investigation of the phase equilibria and properties of Mg–Y–Zr magnesium alloys. Russ Metall 3:188-91
    21. He CY, Du Y, Chen HL, Ouyang H (2008) Measurement of the isothermal sections at 700 and 427?°C in the Al–Mg–Ni system. Int J Mater Res 99:907-11 CrossRef
    22. Ran Q, Lukas HL, Effenberg G, Petzow G (1988) Thermodynamic optimization of the Mg–Y system. CALPHAD 12:375-81 CrossRef
    23. Fabrichnaya OB, Lukas HL, Effenberg G, Aldinger F (2003) Thermodynamic optimization in the Mg–Y system. Intermetallics 11:1183-188 CrossRef
    24. Shakhshir SA, Medraj M (2006) Computational thermodynamic model for the Mg–Al–Y system. J Phase Equilibria Diffus 27:231-44 CrossRef
    25. Guo C, Du Z, Li C (2007) A thermodynamic description of the Gd–Mg–Y system. Calphad 31:75-8 CrossRef
    26. Meng FG, Wang J, Liu HS, Liu LB, Jin ZP (2007) Experimental investigation and thermodynamic calculation of phase relations in the Mg–Nd–Y ternary system. Mater Sci Eng A 454-55:266-73 CrossRef
    27. H?m?l?inen M, Zeng K (1998) Thermodynamic evaluation of the Mg–Zr system. CALPHAD 22:375-80 CrossRef
    28. Arroyave R, Shin D, Liu ZK (2005) Modification of the thermodynamic model for the Mg–Zr system. CALPHAD 29:230-38 CrossRef
    29. Flandorfer H, Gr?bner J, Stamou A (1997) Experimental investigation and thermodynamic calculation of the ternary system Mn–Y–Zr. Z Metallkd 88:529-38
    30. He HX, Liu HS (2009) Determination of the isothermal section of the Cu–Zr–Y ternary system at 978?K. J Alloy Compd 475:245-51 CrossRef
    31. Sundman B, Jansson B, Andersson JO (1985) The thermo-calc databank system. CALPHAD 9:153-90 CrossRef
    32. Friedrich HE, Mordike BL (2006) Magnesium technology. Springer, New York
  • 作者单位:Kaiming Cheng (1)
    Hua Zhou (1)
    Yong Du (1)
    Shuhong Liu (1)
    Honghui Xu (1)

    1. State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, Hunan, People’s Republic of China
  • ISSN:1573-4803
文摘
The Mg–Y–Zr system was studied via experimental investigation and thermodynamic modeling. Four diffusion couples and four key alloys of the Mg–Y–Zr system at 500?°C were prepared. The phase relations of the Mg–Y–Zr system were investigated by means of X-ray diffraction, scanning electron microscopy, and electron probe microanalysis. No ternary compound was found at 500?°C. The solubility of (αZr) in the Mg–Y intermetallics, i.e., Mg24Y5, Mg2Y and MgY, was determined to be negligible. The differential scanning calorimetry measurement was performed on the Mg–Y–Zr alloys to obtain the phase transition temperature. The present thermodynamic calculations of the Mg–Y–Zr system matched well with the experimental data. The presently established Mg–Y–Zr phase diagram can offer a better understanding of the recent processing technique of creep-resistant magnesium alloys.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700