Development of synchronous VHL syndrome tumors reveals contingencies and constraints to tumor evolution
详细信息    查看全文
  • 作者:Rosalie Fisher (1) (2)
    Stuart Horswell (1)
    Andrew Rowan (1)
    Maximilian P Salm (1)
    Elza C de Bruin (3)
    Sakshi Gulati (1)
    Nicholas McGranahan (1) (4)
    Mark Stares (1) (2)
    Marco Gerlinger (5)
    Ignacio Varela (6)
    Andrew Crockford (1)
    Francesco Favero (1) (7)
    Virginie Quidville (8)
    Fabrice Andr茅 (8)
    Carolina Navas (1)
    Eva Gr枚nroos (1)
    David Nicol (2)
    Steve Hazell (2)
    David Hrouda (9)
    Tim O鈥橞rien (10)
    Nik Matthews (1)
    Ben Phillimore (1)
    Sharmin Begum (1)
    Adam Rabinowitz (1)
    Jennifer Biggs (1)
    Paul A Bates (1)
    Neil Q McDonald (1)
    Gordon Stamp (1)
    Bradley Spencer-Dene (1)
    James J Hsieh (11)
    Jianing Xu (11)
    Lisa Pickering (2)
    Martin Gore (2)
    James Larkin (2)
    Charles Swanton (1) (3)

    1. Cancer Research UK London Research Institute
    ; London ; WC2A 3LY ; UK
    2. Royal Marsden NHS Foundation Trust
    ; London ; SW3 6JJ ; UK
    3. University College London Cancer Institute
    ; London ; WC1E 6DD ; UK
    4. Centre for Mathematics & Physics in the Life Science & Experimental Biology (CoMPLEX)
    ; University College London ; London ; WC1E 6BT ; UK
    5. Centre for Evolution and Cancer
    ; Institute of Cancer Research ; London ; SW7 3RP ; UK
    6. Instituto de Biomedicina y Biotecnolog铆a de Cantabria (CSIC-UC-Sodercan)
    ; Departamento de Biolog铆a Molecular ; Universidad de Cantabria ; Santander ; 39011 ; Spain
    7. Cancer System Biology
    ; Center for Biological Sequence Analysis ; Department of Systems Biology ; Technical University of Denmark ; Lyngby ; DK-2800 ; Denmark
    8. Institut Gustave Roussy
    ; Villejuif ; 94805 ; France
    9. Imperial College Healthcare NHS Trust
    ; London ; W6 8RF ; UK
    10. Guy鈥檚 and St Thomas鈥?NHS Foundation Trust
    ; London ; SE1 9RT ; UK
    11. Department of Human Oncology and Pathogenesis Program
    ; Memorial Sloan Kettering Cancer Center ; New York ; 10065 ; USA
  • 刊名:Genome Biology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:15
  • 期:8
  • 全文大小:2,384 KB
  • 参考文献:1. Seizinger, BR, Rouleau, GA, Ozelius, LJ, Lane, AH, Farmer, GE, Lamiell, JM, Haines, J, Yuen, JW, Collins, D, Majoor-Krakauer, D, Bonner, T, Mathew, C, Rubenstein, A, Halperin, J, McConkie-Rosell, A, Green, JS, Trofatter, JA, Ponder, BA, Eierman, L, Bowmer, MI, Schimke, R, Oostra, B, Aronin, N, Smith, DI, Drabkin, H, Waziri, MH, Hobbs, WJ, Martuza, RL, Conneally, PM, Hsia, YE (1988) Von Hippel-Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 332: pp. 268-269 CrossRef
    2. Latif, F, Tory, K, Gnarra, J, Yao, M, Duh, FM, Orcutt, ML, Stackhouse, T, Kuzmin, I, Modi, W, Geil, L (1993) Identification of the von Hippel-Lindau disease tumor suppressor gene. Science 260: pp. 1317-1320 CrossRef
    3. Knudson, AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci U S A 68: pp. 820-823 CrossRef
    4. Nickerson, ML, Jaeger, E, Shi, Y, Durocher, JA, Mahurkar, S, Zaridze, D, Matveev, V, Janout, V, Kollarova, H, Bencko, V, Navratilova, M, Szeszenia-Dabrowska, N, Mates, D, Mukeria, A, Holcatova, I, Schmidt, LS, Toro, JR, Karami, S, Hung, R, Gerard, GF, Linehan, WM, Merino, M, Zbar, B, Boffetta, P, Brennan, P, Rothman, N, Chow, WH, Waldman, FM, Moore, LE (2008) Improved identification of von Hippel-Lindau gene alterations in clear cell renal tumors. Clin Cancer Res 14: pp. 4726-4734 CrossRef
    5. Moore, LE, Nickerson, ML, Brennan, P, Toro, JR, Jaeger, E, Rinsky, J, Han, SS, Zaridze, D, Matveev, V, Janout, V, Kollarova, H, Bencko, V, Navratilova, M, Szeszenia-Dabrowska, N, Mates, D, Schmidt, LS, Lenz, P, Karami, S, Linehan, WM, Merino, M, Chanock, S, Boffetta, P, Chow, WH, Waldman, FM, Rothman, N (2011) Von Hippel-Lindau (VHL) inactivation in sporadic clear cell renal cancer: associations with germline VHL polymorphisms and etiologic risk factors. PLoS Genet 7: pp. e1002312 1371/journal.pgen.1002312" target="_blank" title="It opens in new window">CrossRef
    Comprehensive molecular characterization of clear cell renal cell carcinoma. Nature 499: pp. 43-49 CrossRef
    6. Sato, Y, Yoshizato, T, Shiraishi, Y, Maekawa, S, Okuno, Y, Kamura, T, Shimamura, T, Sato-Otsubo, A, Nagae, G, Suzuki, H, Nagata, Y, Yoshida, K, Kon, A, Suzuki, Y, Chiba, K, Tanaka, H, Niida, A, Fujimoto, A, Tsunoda, T, Morikawa, T, Maeda, D, Kume, H, Sugano, S, Fukayama, M, Aburatani, H, Sanada, M, Miyano, S, Homma, Y, Ogawa, S (2013) Integrated molecular analysis of clear-cell renal cell carcinoma. Nat Genet 45: pp. 860-867 CrossRef
    7. Martinez, P, Birkbak, NJ, Gerlinger, M, McGranahan, N, Burrell, RA, Rowan, AJ, Joshi, T, Fisher, R, Larkin, J, Szallasi, Z, Swanton, C (2013) Parallel evolution of tumour subclones mimics diversity between tumours. J Pathol 230: pp. 356-364 CrossRef
    8. Gerlinger, M, Horswell, S, Larkin, J, Rowan, AJ, Salm, MP, Varela, I, Fisher, R, McGranahan, N, Matthews, N, Santos, CR, Martinez, P, Phillimore, B, Begum, S, Rabinowitz, A, Spencer-Dene, B, Gulati, S, Bates, PA, Stamp, G, Pickering, L, Gore, M, Nicol, DL, Hazell, S, Futreal, PA, Stewart, A, Swanton, C (2014) Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet 46: pp. 225-233 CrossRef
    9. Zbar, B, Brauch, H, Talmadge, C, Linehan, M (1987) Loss of alleles of loci on the short arm of chromosome 3 in renal cell carcinoma. Nature 327: pp. 721-724 CrossRef
    10. Gerlinger, M, Rowan, A, Horswell, S, Larkin, J, Endesfelder, D, Gronroos, E, Martinez, P, Matthews, N, Stewart, A, Mcdonald, N, Butler, A, Jones, D, Raine, K, Santos, C, Varela, I, Nohadani, M, Eklund, A, Spencer鈥揇ene, B, Clark, G, Pickering, L, Stamp, G, Gore, M, Szallasi, Z, Downward, J, Futreal, PA, Swanton, C (2012) Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 366: pp. 883-893 13205" target="_blank" title="It opens in new window">CrossRef
    11. Varela, I, Tarpey, P, Raine, K, Huang, D, Ong, CK, Stephens, P, Davies, H, Jones, D, Lin, ML, Teague, J, Bignell, G, Butler, A, Cho, J, Dalgliesh, GL, Galappaththige, D, Greenman, C, Hardy, C, Jia, M, Latimer, C, Lau, KW, Marshall, J, McLaren, S, Menzies, A, Mudie, L, Stebbings, L, Largaespada, DA, Wessels, LF, Richard, S, Kahnoski, RJ, Anema, J (2011) Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma. Nature 469: pp. 539-542 CrossRef
    12. Dalgliesh, GL, Furge, K, Greenman, C, Chen, L, Bignell, G, Butler, A, Davies, H, Edkins, S, Hardy, C, Latimer, C, Teague, J, Andrews, J, Barthorpe, S, Beare, D, Buck, G, Campbell, PJ, Forbes, S, Jia, M, Jones, D, Knott, H, Kok, CY, Lau, KW, Leroy, C, Lin, ML, McBride, DJ, Maddison, M, Maguire, S, McLay, K, Menzies, A, Mironenko, T (2010) Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 463: pp. 360-363 CrossRef
    13. Guo, G, Gui, Y, Gao, S, Tang, A, Hu, X, Huang, Y, Jia, W, Li, Z, He, M, Sun, L, Song, P, Sun, X, Zhao, X, Yang, S, Liang, C, Wan, S, Zhou, F, Chen, C, Zhu, J, Li, X, Jian, M, Zhou, L, Ye, R, Huang, P, Chen, J, Jiang, T, Liu, X, Wang, Y, Zou, J, Jiang, Z (2012) Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma. Nat Genet 44: pp. 17-19 CrossRef
    14. Larkin, J, Goh, XY, Vetter, M, Pickering, L, Swanton, C (2012) Epigenetic regulation in RCC: opportunities for therapeutic intervention?. Nat Rev Urol 9: pp. 147-155 CrossRef
    15. Nowell, PC (1976) The clonal evolution of tumor cell populations. Science 194: pp. 23-28 CrossRef
    16. Junttila, MR, Sauvage, FJ (2013) Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501: pp. 346-354 CrossRef
    17. Greaves, M, Maley, CC (2012) Clonal evolution in cancer. Nature 481: pp. 306-313 CrossRef
    18. Gould, SJ (1989) Wonderful Life: The Burgess Shale and the Nature of History. Norton, New York
    19. Conway Morris, S (2003) Life鈥檚 Solution: Inevitable Humans in a Lonely Universe. Cambridge University Press, New York CrossRef
    20. Carter, SL, Cibulskis, K, Helman, E, McKenna, A, Shen, H, Zack, T, Laird, PW, Onofrio, RC, Winckler, W, Weir, BA, Beroukhim, R, Pellman, D, Levine, DA, Lander, ES, Meyerson, M, Getz, G (2012) Absolute quantification of somatic DNA alterations in human cancer. Nat Biotechnol 30: pp. 413-421 CrossRef
    21. Gordon, MS, Hussey, M, Nagle, RB, Lara, PN, Mack, PC, Dutcher, J, Samlowski, W, Clark, JI, Quinn, DI, Pan, CX, Crawford, D (2009) Phase II study of erlotinib in patients with locally advanced or metastatic papillary histology renal cell cancer: SWOG S0317. J Clin Oncol 27: pp. 5788-5793 CrossRef
    22. Maher, ER, Yates, JR, Harries, R, Benjamin, C, Harris, R, Moore, AT, Ferguson-Smith, MA (1990) Clinical features and natural history of von Hippel-Lindau disease. Q J Med 77: pp. 1151-1163 CrossRef
    23. Urano, J, Sato, T, Matsuo, T, Otsubo, Y, Yamamoto, M, Tamanoi, F (2007) Point mutations in TOR confer Rheb-independent growth in fission yeast and nutrient-independent mammalian TOR signaling in mammalian cells. Proc Natl Acad Sci U S A 104: pp. 3514-3519 CrossRef
    24. Ohne, Y, Takahara, T, Hatakeyama, R, Matsuzaki, T, Noda, M, Mizushima, N, Maeda, T (2008) Isolation of hyperactive mutants of mammalian target of rapamycin. J Biol Chem 283: pp. 31861-31870 CrossRef
    25. Grabiner, BC, Nardi, V, Birsoy, K, Possemato, R, Shen, K, Sinha, S, Jordan, A, Beck, AH, Sabatini, DM (2014) A diverse array of cancer-associated MTOR mutations are hyperactivating and can predict rapamycin sensitivity. Cancer Discov 4: pp. 554-563 13-0929" target="_blank" title="It opens in new window">CrossRef
    26. Murugan, AK, Alzahrani, A, Xing, M (2013) Mutations in critical domains confer the human mTOR gene strong tumorigenicity. J Biol Chem 288: pp. 6511-6521 CrossRef
    27. Voss, MH, Hakimi, AA, Pham, CG, Brannon, AR, Chen, YB, Cunha, LF, Akin, O, Liu, H, Takeda, S, Scott, SN, Socci, ND, Viale, A, Schultz, N, Sander, C, Reuter, VE, Russo, P, Cheng, EH, Motzer, RJ, Berger, MF, Hsieh, JJ (2014) Tumor genetic analyses of patients with metastatic renal cell carcinoma and extended benefit from mTOR inhibitor therapy. Clin Cancer Res 20: pp. 1955-1964 13-2345" target="_blank" title="It opens in new window">CrossRef
    28. Wagle, N, Grabiner, BC, Allen, EM, Hodis, E, Jacobus, S, Supko, JG, Stewart, M, Choueiri, TK, Gandhi, L, Cleary, JM, Elfiky, AA, Taplin, ME, Stack, EC, Signoretti, S, Loda, M, Shapiro, GI, Sabatini, DM, Lander, ES, Gabriel, SB, Kantoff, PW, Garraway, LA, Rosenberg, JE (2014) Activating mTOR mutations in a patient with an extraordinary response on a phase I trial of everolimus and pazopanib. Cancer Discov 4: pp. 546-553 13-0353" target="_blank" title="It opens in new window">CrossRef
    29. Nawroth, R, Stellwagen, F, Schulz, WA, Stoehr, R, Hartmann, A, Krause, BJ, Gschwend, JE, Retz, M (2011) S6K1 and 4E-BP1 are independent regulated and control cellular growth in bladder cancer. PLoS One 6: pp. e27509 1371/journal.pone.0027509" target="_blank" title="It opens in new window">CrossRef
    30. She, QB, Halilovic, E, Ye, Q, Zhen, W, Shirasawa, S, Sasazuki, T, Solit, DB, Rosen, N (2010) 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 18: pp. 39-51 CrossRef
    31. Liang, H, Cheung, LW, Li, J, Ju, Z, Yu, S, Stemke-Hale, K, Dogruluk, T, Lu, Y, Liu, X, Gu, C, Guo, W, Scherer, SE, Carter, H, Westin, SN, Dyer, MD, Verhaak, RG, Zhang, F, Karchin, R, Liu, CG, Lu, KH, Broaddus, RR, Scott, KL, Hennessy, BT, Mills, GB (2012) Whole-exome sequencing combined with functional genomics reveals novel candidate driver cancer genes in endometrial cancer. Genome Res 22: pp. 2120-2129 137596.112" target="_blank" title="It opens in new window">CrossRef
    32. Li, L, Shen, C, Nakamura, E, Ando, K, Signoretti, S, Beroukhim, R, Cowley, GS, Lizotte, P, Liberzon, E, Bair, S, Root, DE, Tamayo, P, Tsherniak, A, Cheng, SC, Tabak, B, Jacobsen, A, Hakimi, AA, Schultz, N, Ciriello, G, Sander, C, Hsieh, JJ, Kaelin, WG (2013) SQSTM1 is a pathogenic target of 5q copy number gains in kidney cancer. Cancer Cell 24: pp. 738-750 13.10.025" target="_blank" title="It opens in new window">CrossRef
    33. He, X, Wang, J, Messing, EM, Wu, G (2011) Regulation of receptor for activated C kinase 1 protein by the von Hippel-Lindau tumor suppressor in IGF-I-induced renal carcinoma cell invasiveness. Oncogene 30: pp. 535-547 CrossRef
    34. Duran, A, Amanchy, R, Linares, JF, Joshi, J, Abu-Baker, S, Porollo, A, Hansen, M, Moscat, J, Diaz-Meco, MT (2011) p62 is a key regulator of nutrient sensing in the mTORC1 pathway. Mol Cell 44: pp. 134-146 CrossRef
    35. Mazza, S, Maffucci, T (2011) Class II phosphoinositide 3-kinase C2alpha: what we learned so far. Int J Biochem Mol Biol 2: pp. 168-182
    36. Tibolla, G, Pineiro, R, Chiozzotto, D, Mavrommati, I, Wheeler, AP, Norata, GD, Catapano, AL, Maffucci, T, Falasca, M (2013) Class II phosphoinositide 3-kinases contribute to endothelial cells morphogenesis. PLoS One 8: pp. e53808 1371/journal.pone.0053808" target="_blank" title="It opens in new window">CrossRef
    37. Beroukhim, R, Brunet, JP, Napoli, A, Mertz, KD, Seeley, A, Pires, MM, Linhart, D, Worrell, RA, Moch, H, Rubin, MA, Sellers, WR, Meyerson, M, Linehan, WM, Kaelin, WG, Signoretti, S (2009) Patterns of gene expression and copy-number alterations in von-hippel lindau disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res 69: pp. 4674-4681 CrossRef
    38. Whyte, LL (1965) Internal factors in evolution. Acta Biotheor 17: pp. 33-48 CrossRef
    39. Waddington, CH (1942) Canalization of development and the inheritance of acquired characters. Nature 3811: pp. 563-565 CrossRef
    40. Beatty, J (2006) Replaying life鈥檚 tape. J Philosophy CIII: pp. 336-362
    41. Travisano, M, Mongold, JA, Bennett, AF, Lenski, RE (1995) Experimental tests of the roles of adaptation, chance, and history in evolution. Science 267: pp. 87-90 CrossRef
    42. Greaves, MF, Maia, AT, Wiemels, JL, Ford, AM (2003) Leukemia in twins: lessons in natural history. Blood 102: pp. 2321-2333 CrossRef
    43. Cazzaniga, G, Delft, FW, Lo Nigro, L, Ford, AM, Score, J, Iacobucci, I, Mirabile, E, Taj, M, Colman, SM, Biondi, A, Greaves, M (2011) Developmental origins and impact of BCR-ABL1 fusion and IKZF1 deletions in monozygotic twins with Ph鈥?鈥塧cute lymphoblastic leukemia. Blood 118: pp. 5559-5564 CrossRef
    44. Ma, Y, Dobbins, SE, Sherborne, AL, Chubb, D, Galbiati, M, Cazzaniga, G, Micalizzi, C, Tearle, R, Lloyd, AL, Hain, R, Greaves, M, Houlston, RS (2013) Developmental timing of mutations revealed by whole-genome sequencing of twins with acute lymphoblastic leukemia. Proc Natl Acad Sci U S A 110: pp. 7429-7433 CrossRef
    45. Papaemmanuil, E, Gerstung, M, Malcovati, L, Tauro, S, Gundem, G, Loo, P, Yoon, CJ, Ellis, P, Wedge, DC, Pellagatti, A, Shlien, A, Groves, MJ, Forbes, SA, Raine, K, Hinton, J, Mudie, LJ, McLaren, S, Hardy, C, Latimer, C, Della Porta, MG, O'Meara, S, Ambaglio, I, Galli, A, Butler, AP, Walldin, G, Teague, JW, Quek, L, Sternberg, A, Gambacorti-Passerini, C, Cross, NC (2013) Clinical and biological implications of driver mutations in myelodysplastic syndromes. Blood 122: pp. 3616-3627 13-08-518886" target="_blank" title="It opens in new window">CrossRef
    46. Blount, ZD, Borland, CZ, Lenski, RE (2008) Historical contingency and the evolution of a key innovation in an experimental population of Escherichia coli. Proc Natl Acad Sci U S A 105: pp. 7899-7906 CrossRef
    47. Blount, ZD, Barrick, JE, Davidson, CJ, Lenski, RE (2012) Genomic analysis of a key innovation in an experimental Escherichia coli population. Nature 489: pp. 513-518 CrossRef
    48. Harms, MJ, Thornton, JW (2014) Historical contingency and its biophysical basis in glucocorticoid receptor evolution. Nature 512: pp. 203-207 13410" target="_blank" title="It opens in new window">CrossRef
    49. Lui, VW, Hedberg, ML, Li, H, Vangara, BS, Pendleton, K, Zeng, Y, Lu, Y, Zhang, Q, Du, Y, Gilbert, BR, Freilino, M, Sauerwein, S, Peyser, ND, Xiao, D, Diergaarde, B, Wang, L, Chiosea, S, Seethala, R, Johnson, JT, Kim, S, Duvvuri, U, Ferris, RL, Romkes, M, Nukui, T, Kwok-Shing Ng, P, Garraway, LA, Hammerman, PS, Mills, GB, Grandis, JR (2013) Frequent mutation of the PI3K pathway in head and neck cancer defines predictive biomarkers. Cancer Discov 3: pp. 761-769 13-0103" target="_blank" title="It opens in new window">CrossRef
    50. Robinson, JT, Thorvaldsdottir, H, Winckler, W, Guttman, M, Lander, ES, Getz, G, Mesirov, JP (2011) Integrative genomics viewer. Nat Biotechnol 29: pp. 24-26 CrossRef
    51. Nakamura, K, Oshima, T, Morimoto, T, Ikeda, S, Yoshikawa, H, Shiwa, Y, Ishikawa, S, Linak, MC, Hirai, A, Takahashi, H, Altaf-Ul-Amin, M, Ogasawara, N, Kanaya, S (2011) Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res 39: pp. e90 CrossRef
    52. Liu, X, Jian, X, Boerwinkle, E (2013) dbNSFP v2.0: a database of human non-synonymous SNVs and their functional predictions and annotations. Hum Mutat 34: pp. e2393-e2402 CrossRef
    53. Wang, K, Li, M, Hakonarson, H (2010) ANNOVAR: Functional annotation of genetic variants from next-generation sequencing data. Nucleic Acids Res 38: pp. e164 CrossRef
    54. Ye, K, Schulz, MH, Long, Q, Apweiler, R, Ning, Z (2009) Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25: pp. 2865-2871 CrossRef
    55. Ion Ampliseq Designer. [https://www.ampliseq.com/browse.action].
    56. Koboldt, DC, Zhang, Q, Larson, DE, Shen, D, McLellan, MD, Lin, L, Miller, CA, Mardis, ER, Ding, L, Wilson, RK (2012) VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res 22: pp. 568-576 CrossRef
    57. Nilsen, G, Liestol, K, Loo, P, Moen Vollan, HK, Eide, MB, Rueda, OM, Chin, SF, Russell, R, Baumbusch, LO, Caldas, C, Borresen-Dale, AL, Lingjaerde, OC (2012) Copynumber: Efficient algorithms for single- and multi-track copy number segmentation. BMC Genomics 13: pp. 591 13-591" target="_blank" title="It opens in new window">CrossRef
    58. Pihur, V, Datta, S, Datta, S (2009) RankAggreg, an R package for weighted rank aggregation. BMC Bioinformatics 10: pp. 62 CrossRef
    59. TCGA Copy Number Portal. [http://www.broadinstitute.org/tcga/home]
    60. Landau, DA, Carter, SL, Stojanov, P, McKenna, A, Stevenson, K, Lawrence, MS, Sougnez, C, Stewart, C, Sivachenko, A, Wang, L, Wan, Y, Zhang, W, Shukla, SA, Vartanov, A, Fernandes, SM, Saksena, G, Cibulskis, K, Tesar, B, Gabriel, S, Hacohen, N, Meyerson, M, Lander, ES, Neuberg, D, Brown, JR, Getz, G, Wu, CJ (2013) Evolution and impact of subclonal mutations in chronic lymphocytic leukemia. Cell 152: pp. 714-726 13.01.019" target="_blank" title="It opens in new window">CrossRef
    61. Fraley C, Raftery AE, Murphy TB, Scrucca L: / mclust version 4 for R: Normal Mixture Modeling for Model-Based Clustering, Classification and Density Estimation. University of Washington; 2012.
    62. Loo, P, Nordgard, SH, Lingjaerde, OC, Russnes, HG, Rye, IH, Sun, W, Weigman, VJ, Marynen, P, Zetterberg, A, Naume, B, Perou, CM, Borresen-Dale, AL, Kristensen, VN (2010) Allele-specific copy number analysis of tumors. Proc Natl Acad Sci U S A 107: pp. 16910-16915 CrossRef
    63. PyMOL. [http://www.pymol.org/]
    64. Zhou, X, Tan, M, Stone Hawthorne, V, Klos, KS, Lan, KH, Yang, Y, Yang, W, Smith, TL, Shi, D, Yu, D (2004) Activation of the Akt/mammalian target of rapamycin/4E-BP1 pathway by ErbB2 overexpression predicts tumor progression in breast cancers. Clin Cancer Res 10: pp. 6779-6788 CrossRef
  • 刊物主题:Animal Genetics and Genomics; Human Genetics; Plant Genetics & Genomics; Microbial Genetics and Genomics; Fungus Genetics; Bioinformatics;
  • 出版者:BioMed Central
  • ISSN:1465-6906
文摘
Background Genomic analysis of multi-focal renal cell carcinomas from an individual with a germline VHL mutation offers a unique opportunity to study tumor evolution. Results We perform whole exome sequencing on four clear cell renal cell carcinomas removed from both kidneys of a patient with a germline VHL mutation. We report that tumors arising in this context are clonally independent and harbour distinct secondary events exemplified by loss of chromosome 3p, despite an identical genetic background and tissue microenvironment. We propose that divergent mutational and copy number anomalies are contingent upon the nature of 3p loss of heterozygosity occurring early in tumorigenesis. However, despite distinct 3p events, genomic, proteomic and immunohistochemical analyses reveal evidence for convergence upon the PI3K-AKT-mTOR signaling pathway. Four germline tumors in this young patient, and in a second, older patient with VHL syndrome demonstrate minimal intra-tumor heterogeneity and mutational burden, and evaluable tumors appear to follow a linear evolutionary route, compared to tumors from patients with sporadic clear cell renal cell carcinoma. Conclusions In tumors developing from a germline VHL mutation, the evolutionary principles of contingency and convergence in tumor development are complementary. In this small set of patients with early stage VHL-associated tumors, there is reduced mutation burden and limited evidence of intra-tumor heterogeneity.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700