Effects of natural organic matter on the coprecipitation of arsenic with iron
详细信息    查看全文
  • 作者:Eun Jung Kim ; Bo-Ram Hwang ; Kitae Baek
  • 关键词:Arsenic ; Iron ; Natural organic matter ; Coprecipitation
  • 刊名:Environmental Geochemistry and Health
  • 出版年:2015
  • 出版时间:December 2015
  • 年:2015
  • 卷:37
  • 期:6
  • 页码:1029-1039
  • 全文大小:1,348 KB
  • 参考文献:Chen, Z., Cai, Y., Solo-Gabriele, H., Snyder, G. H., & Cisar, J. L. (2006). Interactions of arsenic and the dissolved substances derived from turf soils. Envionmental Science & Technology, 40, 4659-665.CrossRef
    Deng, Y., & Dixon, J. B. (2002). Soil organic matter and organic-mineral interactions. In J. B. Dixon & D. G. Schulze (Eds.), Soil mineralogy with environmental applications (Vol. 3). Madison, WI: Soil Science Society of America Inc.
    Dixit, S., & Hering, J. G. (2003). Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Envionmental Science & Technology, 37, 4182-189.CrossRef
    Ford, R. G. (2002). Rates of hydrous ferric oxide crystallization and the influence on coprecipitated arsenate. Envionmental Science & Technology, 36, 2459-463.CrossRef
    Goldberg, S., & Johnston, C. T. (2001). Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. Journal of Colloid and Interface Science, 234, 204-16.CrossRef
    Gomez, M. A., Assaaoudi, H., Becze, L., Cutler, J. N., & Demopoulos, G. P. (2009). Vibrational spectroscopy study of hydrothermally produced scorodite (FeAsO4·2H2O), ferric arsenate sub-hydrate (FAsH; FeAsO4·0.75H2O) and basic ferric arsenate sulfate (BFAS; Fe[(AsO4)1 ?nbsp;x(SO4)x(OH)x]·wH2O). Journal of Raman Spectroscopy, 41, 212-21.
    Gu, B., Schmitt, J., Chen, Z., Liang, L., & Mccarthy, J. F. (1995). Adsorption and desorption of different organic matter fractions on iron oxide. Geochimica et Cosmochimica Acta, 59, 219-29.CrossRef
    Hwang, B.-R., Kim, E. J., Yang, J.-S., & Baek, K. (2014). Extractive and oxidative removal of copper bound to humic acid in soil. Envionmental Science and Pollution Research,. doi:10.-007/?s11356-014-3810-y .
    Jia, Y., Xu, L., Fang, Z., & Demopoulos, G. P. (2006). Observation of surface precipitation of arsenate on ferrihydrite. Envionmental Science & Technology, 40, 3248-253.CrossRef
    Jia, Y., Xu, L., Wang, X., & Demopoulos, G. P. (2007). Infrared spectroscopic and X-ray diffraction characterization of the nature of adsorbed arsenate on ferrihydrite. Geochimica et Cosmochimica Acta, 71, 1643-654.CrossRef
    Kim, E. J., Yoo, J.-C., & Baek, K. (2014). Arsenic speciation and bioaccessibility in arsenic-contaminated soils: Sequential extraction and mineralogical investigation. Environmental Pollution, 186, 29-5.CrossRef
    Langmuir, D., Mahoney, J., & Rowson, J. (2006). Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4·2H2O) and their application to arsenic behavior in buried mine tailings. Geochimica et Cosmochimica Acta, 70(12), 2942-956.CrossRef
    Lin, H.-T., Wang, M. C., & Li, G.-C. (2004). Complexation of arsenate with humic substance in water extract of compost. Chemosphere, 56, 1105-112.CrossRef
    Liu, G., Fernandez, A., & Cai, Y. (2011). Complexation of arsenite with humic acid in the presence of ferric iron. Envionmental Science & Technology, 45, 3210-216.CrossRef
    Pansu, M., & Gautheyrou, J. (2006). Handbook of soil analysis: Mineralogical, organic and inorganic methods. Heidelberg: Springer.CrossRef
    Redman, A. D., Macalady, D. L., & Ahmann, D. (2002). Natural organic matter affects arsenic speciation and sorption onto hematite. Envionmental Science & Technology, 36, 2889-896.CrossRef
    Scott, D. T., Mcknight, D. M., Blunt-Harris, E. L., Kolesar, S. E., & Lovley, D. R. (1998). Quinone moieties act as electron acceptors in the reduction of humic substances by humics-reducing microorganisms. Envionmental Science & Technology, 32, 2984-989.CrossRef
    Sharma, P., Ofner, J., & Kappler, A. (2010). Formation of binary and ternary colloids and dissolved complexes of organic matter, Fe and As. Envionmental Science & Technology, 44, 4479-485.CrossRef
    Sharma, P., Rolle, M., Kocar, B., Fendorf, S., & Kappler, A. (2011). Influence of natural organic matter on As transport and retention. Envionmental Science & Technology, 45, 546-53.CrossRef
    Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behavior and distribution of arsenic in natural waters. Applied Geochemistry, 17, 517-68.CrossRef
    Stollenwerk, K. G. (2003). Geochemical processes controlling transport of arsenic in groundwater: A review of adsorption (Arsenic in ground water: Geochemistry and occurrence) (Vol. 3). Boston, Dordrecht, London: Kluwer Academic Publishers.
    Tokoro, C., Yatsugi, Y., Koga, H., & Owada, S. (2010). Sorption mechanisms of arsenate during coprecipitation with ferrihydrite in aqueous solution. Envionmental Science & Technology, 44, 638-43.CrossRef
    Violante, A., Gaudio, S. D., Pigna, M., Ricciardella, M., & Banerjee, D. (2007). Coprecipitation of arsenate with metal oxides. 2. Nature, mineralogy and reactivity of iron(III) precipitates. Envionmental Science & Technology, 41, 8275-280.CrossRef
  • 作者单位:Eun Jung Kim (1)
    Bo-Ram Hwang (2)
    Kitae Baek (1) (2)

    1. Department of Bioactive Material Sciences, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo, 561-675, Republic of Korea
    2. Department of Environmental Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju, Jeollabukdo, 561-675, Republic of Korea
  • 刊物类别:Earth and Environmental Science
  • 刊物主题:Earth sciences
    Geochemistry
    Atmospheric Protection, Air Quality Control and Air Pollution
    Public Health
  • 出版者:Springer Netherlands
  • ISSN:1573-2983
文摘
Natural organic matter (NOM) can affect arsenic speciation and mobility in the environment. In this study, the effects of NOM on the coprecipitation of arsenic with iron were investigated in order to better understand the fate and transport of arsenic in natural environments. The coprecipitation of arsenic with iron was studied in the presence and absence of NOM under various arsenic-to-iron molar ratios (As/Fe) and pH conditions. The addition of humic acid (HA) hindered the As–Fe coprecipitation under high pH and high As/Fe conditions by forming a soluble As–Fe–HA complex. The X-ray diffraction and Fourier transform infrared studies showed that the As–Fe-coprecipitated solid phase was highly affected by pH and As/Fe. The arsenic was coprecipitated with iron as an amorphous ferric arsenate phase at a low pH level or high As/Fe conditions, while the formation of ferrihydrite phase and the arsenic incorporation to the ferrihydrite by adsorption was predominant at high pH levels or low As/Fe conditions. The HA affected the As–Fe-coprecipitated solid phase depending on the As/Fe molar ratio under neutral and alkaline conditions. Keywords Arsenic Iron Natural organic matter Coprecipitation

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700