用户名: 密码: 验证码:
A Sharp Inequality for a Trigonometric Sum
详细信息    查看全文
  • 作者:Horst Alzer (1)
    Stamatis Koumandos (2)
  • 关键词:Primary 42A05 ; Secondary 26D05 ; Inequalities ; sine sums ; cosine sums
  • 刊名:Mediterranean Journal of Mathematics
  • 出版年:2013
  • 出版时间:February 2013
  • 年:2013
  • 卷:10
  • 期:1
  • 页码:313-320
  • 参考文献:1. Alzer H., Koumandos S.: Sharp inequalities for trigonometric sums. Math. Proc. Cambridge Philos. Soc. 134, 139鈥?52 (2003) CrossRef
    2. Alzer H., Koumandos S.: A sharp bound for a sine polynomial. Colloq. Math. 96, 83鈥?1 (2003) CrossRef
    3. Alzer H., Koumandos S.: Inequalities of Fej茅r-Jackson type. Monatsh. Math. 139, 89鈥?03 (2003) CrossRef
    4. Alzer H., Koumandos S.: Sharp inequalities for trigonometric sums in two variables. Illinois J. Math. 48, 887鈥?07 (2004)
    5. Alzer H., Koumandos S.: Companions of the inequalities of Fej茅r-Jackson and Young, Anal. Math. 31, 75鈥?4 (2005)
    6. Alzer H., Koumandos S.: Sub- and superadditive properties of Fej茅r鈥檚 sine polynomial. Bull. London Math. Soc. 38, 261鈥?68 (2006) CrossRef
    7. Alzer H., Koumandos S.: Inequalities for two sine polynomials. Colloq. Math. 105, 127鈥?34 (2006) CrossRef
    8. Alzer H., Koumandos S.: Some monotonic trigonometric sums. Analysis (Munich) 26, 429鈥?49 (2006) CrossRef
    9. Alzer H., Koumandos S.: A new refinement of Young鈥檚 inequality. Proc. Edinb. Math. Soc. (2) 50, 255鈥?62 (2007) CrossRef
    10. Alzer H., Koumandos S.: On the partial sums of a Fourier series. Constr. Approx. 27, 253鈥?68 (2008) CrossRef
    11. Alzer H., Shi X.: Sharp bounds for trigonometric polynomials in two variables. Anal. Appl. (Singap.) 7, 341鈥?50 (2009) CrossRef
    12. R. Askey, / Orthogonal Polynomials and Special Functions, Reg. Conf. Ser. Appl. Math. (vol. 21), SIAM, Philadelphia, PA, 1975.
    13. R. Askey and G. Gasper, / Inequalities for polynomials, In: The Bieberbach conjecture (A. Baernstein II, D. Drasin, P. Duren, A. Marden, eds.), Math. surveys and monographs (no. 21), Amer. Math. Soc., Providence, RI, 1986, 7鈥?2.
    14. Dimitrov D.K., Merlo C.A.: Nonnegative trigonometric polynomials. Constr. Approx. 18, 117鈥?43 (2002) CrossRef
    15. Gasper G.: Positive sums of the classical orthogonal polynomials. SIAM J. Math. Anal. 8, 423鈥?47 (1977) CrossRef
    16. Jackson D.: 脺ber eine trigonometrische Summe. Rend. Circ. Mat. Palermo 32, 257鈥?62 (1911) CrossRef
    17. Koumandos S.: On a positive sine sum. Colloq. Math. 71, 243鈥?51 (1996)
    18. S. Koumandos, / Positive trigonometric sums in the theory of univalent functions, In: Computational Methods and Function Theory (N. Papamichael, S. Ruscheweyh, E.B. Saff, eds.), World Sci. Publ., River Edge, N.J., 1999, 345鈥?357.
    19. Koumandos S.: Monotonic trigonometric sums and coefficients of Bloch functions. Illinois J. Math. 43, 100鈥?12 (1999)
    20. Koumandos S.: A positive functional bound for certain sine sums. Anal. Math. 26, 35鈥?2 (2000) CrossRef
    21. Koumandos S.: Some inequalities for cosine sums. Math. Inequal. Appl. 4, 267鈥?79 (2001)
    22. Koumandos S.: An extension of Vietoris鈥檚 inequalities. Ramanujan J. 14, 1鈥?8 (2007) CrossRef
    23. Koumandos S., Ruscheweyh S.: On a conjecture for trigonometric sums and starlike functions. J. Approx. Theory 149, 42鈥?8 (2007) CrossRef
    24. G. V. Milovanovi膰, D. S. Mitrinovi膰 and Th. M. Rassias, / Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Sci. Publ., Singapore, 1994.
    25. Rogosinski W.W., Szeg枚 G.: 脺ber die Abschnitte von Potenzreihen, die in einem Kreis beschr盲nkt bleiben. Math. Z. 28, 73鈥?4 (1928) CrossRef
    26. Young W.H.: On a certain series of Fourier. Proc. London Math. Soc. (2) 11, 357鈥?66 (1913) CrossRef
  • 作者单位:Horst Alzer (1)
    Stamatis Koumandos (2)

    1. Morsbacher Str. 10, D-51545, Waldbr枚l, Germany
    2. Department of Mathematics and Statistics, The University of Cyprus, P.O. Box 20537, 1678, Nicosia, Cyprus
  • ISSN:1660-5454
文摘
We prove that the inequality $$-\frac{1}{2}\leq {\sum\limits_{k=1}^{n}} \left( \frac{{\rm cos}(2kx)}{2k - 1}+\frac{{\rm sin}((2k - 1)x)}{2k} \right)$$ holds for all natural numbers n and real numbers x with ${x \in [0, \pi]}$ . The sign of equality is valid if and only if n =聽 1 and x =聽 蟺 /2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700