Softened gravity and the extension of the standard model up to infinite energy
详细信息    查看全文
  • 作者:Gian F. Giudice (1)
    Gino Isidori (2) (3)
    Alberto Salvio (4)
    Alessandro Strumia (5) (6)

    1. CERN
    ; Theory Division ; CH-1211 ; Geneva 23 ; Switzerland
    2. Physik-Institut
    ; Universit盲t Z眉rich ; CH-8057 ; Z眉rich ; Switzerland
    3. INFN
    ; Laboratori Nazionali di Frascati ; I-00044 ; Frascati ; Italy
    4. Departamento de F铆sica Te贸rica
    ; Universidad Aut贸noma de Madrid and Instituto de F铆sica Te贸rica IFT-UAM/CSIC ; Cantoblanco ; Madrid ; 28049 ; Spain
    5. INFN 鈥?Sezione di Pisa e Dipartimento di Fisica dell鈥橴niversit脿 di Pisa
    ; I-56127 ; Pisa ; Italy
    6. National Institute of Chemical Physics and Biophysics
    ; Akadeemia tee 23 ; 12618 ; Tallinn ; Estonia
  • 关键词:Higgs Physics ; Beyond Standard Model ; Renormalization Group ; Standard Model
  • 刊名:Journal of High Energy Physics
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:2015
  • 期:2
  • 全文大小:1,140 KB
  • 参考文献:1. Farina, M, Pappadopulo, D, Strumia, A (2013) A modified naturalness principle and its experimental tests. JHEP 08: pp. 022
    2. Fatelo, JP, Gerard, JM, Hambye, T, Weyers, J (1995) Symmetry breaking induced by top loops. Phys. Rev. Lett. 74: pp. 492 CrossRef
    3. Hambye, T (1996) Symmetry breaking induced by top quark loops from a model without scalar mass. Phys. Lett. B 371: pp. 87 CrossRef
    4. Hempfling, R (1996) The next-to-minimal Coleman-Weinberg model. Phys. Lett. B 379: pp. 153 CrossRef
    5. Vissani, F (1998) Do experiments suggest a hierarchy problem?. Phys. Rev. D 57: pp. 7027
    6. P.H. Frampton and C. Vafa, / Conformal approach to particle phenomenology, hep-th/9903226 [INSPIRE].
    7. Meissner, KA, Nicolai, H (2007) Conformal symmetry and the standard model. Phys. Lett. B 648: pp. 312 CrossRef
    8. Chang, W-F, Ng, JN, Wu, JMS (2007) Shadow Higgs from a scale-invariant hidden U(1)(s) model. Phys. Rev. D 75: pp. 115016
    9. Foot, R, Kobakhidze, A, Volkas, RR (2007) Electroweak Higgs as a pseudo-Goldstone boson of broken scale invariance. Phys. Lett. B 655: pp. 156 CrossRef
    10. Foot, R, Kobakhidze, A, McDonald, KL, Volkas, RR (2008) A solution to the hierarchy problem from an almost decoupled hidden sector within a classically scale invariant theory. Phys. Rev. D 77: pp. 035006
    11. Iso, S, Okada, N, Orikasa, Y (2009) The minimal B-L model naturally realized at TeV scale. Phys. Rev. D 80: pp. 115007
    12. Shaposhnikov, M, Wetterich, C (2010) Asymptotic safety of gravity and the Higgs boson mass. Phys. Lett. B 683: pp. 196 CrossRef
    13. Iso, S, Orikasa, Y (2013) TeV scale B-L model with a flat Higgs potential at the Planck scale 鈥?in view of the hierarchy problem. PTEP 2013: pp. 023B08
    14. Hur, T, Ko, P (2011) Scale invariant extension of the standard model with strongly interacting hidden sector. Phys. Rev. Lett. 106: pp. 141802 CrossRef
    15. M. Shaposhnikov, / Asymptotic safety of gravity and the Higgs-boson mass, / Theor. Math. Phys. 170 (2012) 229 [ / Teor. Mat. Fiz. 170 (2012) 280] [INSPIRE].
    16. Englert, C, Jaeckel, J, Khoze, VV, Spannowsky, M (2013) Emergence of the electroweak scale through the Higgs portal. JHEP 04: pp. 060 CrossRef
    17. Chun, EJ, Jung, S, Lee, HM (2013) Radiative generation of the Higgs potential. Phys. Lett. B 725: pp. 158 CrossRef
    18. Heikinheimo, M, Racioppi, A, Raidal, M, Spethmann, C, Tuominen, K (2014) Physical Naturalness and Dynamical Breaking of Classical Scale Invariance. Mod. Phys. Lett. A 29: pp. 1450077 CrossRef
    19. Hambye, T, Strumia, A (2013) Dynamical generation of the weak and Dark Matter scale. Phys. Rev. D 88: pp. 055022
    20. Carone, CD, Ramos, R (2013) Classical scale-invariance, the electroweak scale and vector dark matter. Phys. Rev. D 88: pp. 055020
    21. Farzinnia, A, He, H-J, Ren, J (2013) Natural electroweak symmetry breaking from scale invariant Higgs mechanism. Phys. Lett. B 727: pp. 141 CrossRef
    22. Foot, R, Kobakhidze, A, McDonald, KL, Volkas, RR (2014) Poincar茅 protection for a natural electroweak scale. Phys. Rev. D 89: pp. 115018
    23. Chway, D, Jung, TH, Kim, HD, Dermisek, R (2014) Radiative electroweak symmetry breaking model perturbative all the way to the Planck scale. Phys. Rev. Lett. 113: pp. 051801 CrossRef
    24. Holthausen, M, Kubo, J, Lim, KS, Lindner, M (2013) Electroweak and conformal symmetry breaking by a strongly coupled hidden sector. JHEP 12: pp. 076 CrossRef
    25. Hill, CT (2014) Is the Higgs boson associated with Coleman-Weinberg dynamical symmetry breaking?. Phys. Rev. D 89: pp. 073003
    26. J. Guo and Z. Kang, / Higgs naturalness and dark matter stability by scale invariance, arXiv:1401.5609 [INSPIRE].
    27. Benic, S, Radovcic, B (2014) Electroweak breaking and Dark Matter from the common scale. Phys. Lett. B 732: pp. 91 CrossRef
    28. Chankowski, PH, Lewandowski, A, Meissner, KA, Nicolai, H (2015) Softly broken conformal symmetry and the stability of the electroweak scale. Mod. Phys. Lett. A 30: pp. 1550006 CrossRef
    29. Davoudiasl, H, Lewis, IM (2014) Right-handed neutrinos as the origin of the electroweak scale. Phys. Rev. D 90: pp. 033003
    30. Allison, K, Hill, CT, Ross, GG (2014) Ultra-weak sector, Higgs boson mass and the dilaton. Phys. Lett. B 738: pp. 191 CrossRef
    31. G.M. Pelaggi, / Predictions of a model of weak scale from dynamical breaking of scale invariance, arXiv:1406.4104 [INSPIRE].
    32. Altmannshofer, W, Bardeen, WA, Bauer, M, Carena, M, Lykken, JD (2015) Light dark matter, naturalness and the radiative origin of the electroweak scale. JHEP 01: pp. 032 CrossRef
    33. R. Foot, A. Kobakhidze and A. Spencer-Smith, / Criticality in the scale invariant standard model (squared), arXiv:1409.4915 [INSPIRE].
    34. M.B. Einhorn and D.R.T. Jones, / Naturalness and dimensional transmutation in classically scale-invariant gravity, arXiv:1410.8513 [INSPIRE].
    35. Antipin, O, Redi, M, Strumia, A (2015) Dynamical generation of the weak and dark matter scales from strong interactions. JHEP 01: pp. 157 CrossRef
    36. Antoniadis, I (1990) A possible new dimension at a few TeV. Phys. Lett. B 246: pp. 377 CrossRef
    37. Sundrum, R (2004) Fat euclidean gravity with small cosmological constant. Nucl. Phys. B 690: pp. 302 CrossRef
    38. Salvio, A, Strumia, A (2014) Agravity. JHEP 06: pp. 080 CrossRef
    39. Litim, DF, Sannino, F (2014) Asymptotic safety guaranteed. JHEP 12: pp. 178 CrossRef
    40. Redmond, PJ, Uretsky, JL (1958) Conjecture concerning the properties of nonrenormalizable field theories. Phys. Rev. Lett. 1: pp. 147 CrossRef
    41. Bogolyubov, NN, Logunov, AA, Shirkov, DV (1960) The method of dispersion relations and perturbation theory Sov. Phys. JETP 37: pp. 574
    42. I.M. Suslov, / Renormalization group functions of the 蠒 4 / theory in the strong coupling limit: analytical results, / J. Exp. Theor. Phys. 107 (2008) 413 [ / Zh. Eksp. Teor. Fiz. 134 (2008) 490] [arXiv:1010.4081] [INSPIRE].
    43. Suslov, IM (2009) Exact asymptotics for 尾-function in QED. J. Exp. Theor. Phys. 108: pp. 980 CrossRef
    44. N. Seiberg and E. Witten, / Electric-magnetic duality, monopole condensation and confinement in N = 2 / supersymmetric Yang-Mills theory, / Nucl. Phys. B 426 (1994) 19 [ / Erratum ibid. B 430 (1994) 485] [hep-th/9407087] [INSPIRE].
    45. D.F. Litim, M. Mojaza and F. Sannino, / Vacuum stability of asymptotically safe gauge-Yukawa theories, arXiv:1501.03061 [INSPIRE].
    46. Marques Tavares, G, Schmaltz, M, Skiba, W (2014) Higgs mass naturalness and scale invariance in the UV. Phys. Rev. D 89: pp. 015009
    47. Gross, DJ, Wilczek, F (1973) Asymptotically free gauge theories. 1. Phys. Rev. D 8: pp. 3633
    48. Gross, DJ, Wilczek, F (1973) Ultraviolet behavior of nonabelian gauge theories. Phys. Rev. Lett. 30: pp. 1343 CrossRef
    49. Gross, DJ, Wilczek, F (1974) Asymptotically free gauge theories. 2. Phys. Rev. D 9: pp. 980
    50. Politzer, HD (1973) Reliable perturbative results for strong interactions?. Phys. Rev. Lett. 30: pp. 1346 CrossRef
    51. Coleman, SR, Gross, DJ (1973) Price of asymptotic freedom. Phys. Rev. Lett. 31: pp. 851 CrossRef
    52. Cheng, TP, Eichten, E, Li, L-F (1974) Higgs phenomena in asymptotically free gauge theories. Phys. Rev. D 9: pp. 2259
    53. Fradkin, ES, Kalashnikov, OK (1976) Asymptotically free SU(5) model of unified interaction. Phys. Lett. B 64: pp. 177 CrossRef
    54. O.K. Kalashnikov, / Asymptotically free models of unified interaction, Lebedev-77-206 (1977) [INSPIRE].
    55. Fradkin, ES, Kalashnikov, OK, Konshtein, SE (1978) Asymptotically free E6 model of unified interaction. Lett. Nuovo Cim. 21: pp. 5 CrossRef
    56. Kalashnikov, OK (1977) Asymptotically free SU(2) 脳 SU(2) 脳 SU(4) model of unified interaction. Phys. Lett. B 72: pp. 65 CrossRef
    57. Pendleton, B, Ross, GG (1981) Mass and mixing angle predictions from infrared fixed points. Phys. Lett. B 98: pp. 291 CrossRef
    58. Coleman, SR, Weinberg, EJ (1973) Radiative corrections as the origin of spontaneous symmetry breaking. Phys. Rev. D 7: pp. 1888
    59. Callan, CG, Coleman, S (1977) The fate of the false vacuum. 2. First quantum corrections. Phys. Rev. D 16: pp. 1762
    60. Isidori, G, Ridolfi, G, Strumia, A (2001) On the metastability of the standard model vacuum. Nucl. Phys. B 609: pp. 387 CrossRef
    61. Espinosa, JR, Giudice, GF, Riotto, A (2008) Cosmological implications of the Higgs mass measurement. JCAP 05: pp. 002 CrossRef
    62. Elias-Miro, J (2012) Higgs mass implications on the stability of the electroweak vacuum. Phys. Lett. B 709: pp. 222 CrossRef
    63. Degrassi, G (2012) Higgs mass and vacuum stability in the standard model at NNLO. JHEP 08: pp. 098 CrossRef
    64. Buttazzo, D (2013) Investigating the near-criticality of the Higgs boson. JHEP 12: pp. 089 CrossRef
    65. Frautschi, SC, Kim, J (1982) SU(5) Higgs problem with adjoint + vector representations. Nucl. Phys. B 196: pp. 301 CrossRef
    66. Klimenko, KG (1985) On necessary and sufficient conditions for some Higgs potentials to be bounded from below. Theor. Math. Phys. 62: pp. 58 CrossRef
    67. Kannike, K (2012) Vacuum stability conditions from copositivity criteria. Eur. Phys. J. C 72: pp. 2093 CrossRef
    68. D鈥橝mbrosio, G, Giudice, GF, Isidori, G, Strumia, A (2002) Minimal flavor violation: an effective field theory approach. Nucl. Phys. B 645: pp. 155 CrossRef
    69. Buras, AJ, Gemmler, K, Isidori, G (2011) Quark flavour mixing with right-handed currents: an effective theory approach. Nucl. Phys. B 843: pp. 107 CrossRef
    70. G. Isidori, / Flavor physics and CP-violation, arXiv:1302.0661 [INSPIRE].
    Search for heavy narrow dilepton resonances in pp collisions at s = 7 $$ \sqrt{s}=7 $$ TeV and s = 8 $$ \sqrt{s}=8 $$ TeV. Phys. Lett. B 720: pp. 63
    Search for narrow resonances using the dijet mass spectrum in pp collisions at s = 8 $$ \sqrt{s}=8 $$ TeV. Phys. Rev. D 87: pp. 114015
    Search for high-mass dilepton resonances in pp collisions at s = 8 $$ \sqrt{s}=8 $$ TeV with the ATLAS detector. Phys. Rev. D 90: pp. 052005
    71. ATLAS collaboration, / Search for new phenomena in the dijet mass distribution using pp collision data at \( \sqrt{s}=8 \) / TeV with the ATLAS detector, arXiv:1407.1376 [INSPIRE].
    72. Salvioni, E, Villadoro, G, Zwirner, F (2009) Minimal Z鈥?models: present bounds and early LHC reach. JHEP 11: pp. 068 CrossRef
    73. Salvioni, E, Strumia, A, Villadoro, G, Zwirner, F (2010) Non-universal minimal Z鈥?models: present bounds and early LHC reach. JHEP 03: pp. 010 CrossRef
    74. Barbieri, R, Pomarol, A, Rattazzi, R, Strumia, A (2004) Electroweak symmetry breaking after LEP-1 and LEP-2. Nucl. Phys. B 703: pp. 127 CrossRef
    75. Cacciapaglia, G, Cs谩ki, C, Marandella, G, Strumia, A (2006) The minimal set of electroweak precision parameters. Phys. Rev. D 74: pp. 033011
    Search for heavy neutrinos and W bosons with right-handed couplings in proton-proton collisions at s = 8 $$ \sqrt{s}=8 $$ TeV. Eur. Phys. J. C 74: pp. 3149
    76. Cirigliano, V, Gonzalez-Alonso, M, Graesser, ML (2013) Non-standard charged current interactions: 尾 decays versus the LHC. JHEP 02: pp. 046 CrossRef
    77. Foot, R (1998) An alternative SU(4) 脳 SU(2)L 脳 SU(2)R model. Phys. Lett. B 420: pp. 333 CrossRef
    78. Volkas, RR (1996) Prospects for mass unification at low-energy scales. Phys. Rev. D 53: pp. 2681
    79. Valencia, G, Willenbrock, S (1994) Quark-lepton unification and rare meson decays. Phys. Rev. D 50: pp. 6843
    80. Carpentier, M, Davidson, S (2010) Constraints on two-lepton, two quark operators. Eur. Phys. J. C 70: pp. 1071 CrossRef
    81. Bali, GS (2012) The strange and light quark contributions to the nucleon mass from Lattice QCD. Phys. Rev. D 85: pp. 054502
  • 刊物类别:Physics and Astronomy
  • 刊物主题:Physics
    Elementary Particles and Quantum Field Theory
    Quantum Field Theories, String Theory
  • 出版者:Springer Berlin / Heidelberg
  • ISSN:1029-8479
文摘

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700