Nanomaterials-based electrochemical sensors for nitric oxide
详细信息    查看全文
  • 作者:Xueping Dang (1) (3)
    Hui Hu (2)
    Shengfu Wang (1)
    Shengshui Hu (3)

    1. Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials
    ; Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules & College of Chemistry and Chemical Engineering ; Hubei University ; Wuhan ; 430062 ; People鈥檚 Republic of China
    3. Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education)
    ; College of Chemistry and Molecular Sciences ; Wuhan University ; Wuhan ; 430072 ; People鈥檚 Republic of China
    2. Economics and Management School
    ; Wuhan University ; Wuhan ; 430072 ; People鈥檚 Republic of China
  • 关键词:Nitric oxide (NO) ; Electrochemistry ; Sensors ; Nanomaterials ; Nanotechnology
  • 刊名:Microchimica Acta
  • 出版年:2015
  • 出版时间:February 2015
  • 年:2015
  • 卷:182
  • 期:3-4
  • 页码:455-467
  • 全文大小:1,148 KB
  • 参考文献:1. Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373鈥?76
    2. Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci 84:9265鈥?269
    3. Rapoport RM, Murad F (1983) Agonist-induced endothelium-dependent relaxation in rat thoracic aorta may be mediated through cGMP. Circ Res 52:352鈥?57
    4. Wang Y, Marsden PA (1995) Nitric Oxide Synthases: Gene Structure and Regulation, in / Advances in Pharmacology, I. Louis and M. Ferid, Editors. Academic Press. pp. 71鈥?0
    5. Stuehr DJ, Santolini J, Wang ZQ, Wei CC, Adak S (2004) Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem 279:36167鈥?6170
    6. Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907鈥?16
    7. Guix FX, Uribesalgo I, Coma M, Munoz FJ (2005) The physiology and pathophysiology of nitric oxide in the brain. Prog Neurobiol 76:126鈥?52
    8. Luo JD, Chen AF (2005) Nitric oxide: a newly discovered function on wound healing. Acta Pharmacol Sin 26:259鈥?64
    9. MacMicking J, Xie Q, Nathan C (1997) Nitric oxide and macrophage function. Annu Rev Immunol 15:323鈥?50
    10. Stamler JS (1999) Nitric oxide in the cardiovascular system. Coron Artery Dis 10:273鈥?76
    11. Hetrick EM, Shin JH, Stasko NA, Johnson CB, Wespe DA, Holmuhamedov E, Schoenfisch MH (2008) Bactericidal efficacy of nitric oxide-releasing silica nanoparticles. ACS Nano 2:235鈥?46
    12. Riccio DA, Dobmeier KP, Hetrick EM, Privett BJ, Paul HS, Schoenfisch MH (2009) Nitric oxide-releasing S-nitrosothiol-modified xerogels. Biomaterials 30:4494鈥?502
    13. Lancaster JR (1997) A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide 1:18鈥?0
    14. Thomas DD, Ridnour LA, Isenberg JS, Flores-Santana W, Switzer CH, Donzelli S, Hussain P, Vecoli C, Paolocci N, Ambs S, Colton CA, Harris CC, Roberts DD, Wink DA (2008) The chemical biology of nitric oxide: implications in cellular signaling. Free Radic Bio Med 45:18鈥?1
    15. Wink DA, Mitchell JB (1998) Chemical biology of nitric oxide: insights into regulatory, cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radic Bio Med 25:434鈥?56
    16. Hall CN, Garthwaite J (2009) What is the real physiological NO concentration in vivo? Nitric Oxide 21:92鈥?03
    17. Yao D, Vlessidis AG, Evmiridis NP (2004) Determination of nitric oxide in biological samples. Microchim Acta 147:1鈥?0
    18. Griveau S, Bedioui F (2013) Overview of significant examples of electrochemical sensor arrays designed for detection of nitric oxide and relevant species in a biological environment. Anal Bioanal Chem 405:3475鈥?488
    19. Trouillon R (2012) Biological applications of the electrochemical sensing of nitric oxide: fundamentals and recent developments. Biol Chem 394:17鈥?3
    20. Zhang XJ (2004) Real time and in vivo monitoring of nitric oxide by electrocehmical sensors - from dream to reality. Front Biosci-Landmrk 9:3434鈥?446
    21. Xu T, Scafa N, Xu LP, Su L, Li C, Zhou S, Liu Y, Zhang X (2014) Electrochemical sensors for nitric oxide detection in biological applications. Electroanal 26:449鈥?68
    22. Privett BJ, Shin JH, Schoenfisch MH (2010) Electrochemical nitric oxide sensors for physiological measurements. Chem Soc Rev 39:1925鈥?935
    23. Davies IR, Zhang X (2008) Nitric Oxide Selective Electrodes, in / Methods in Enzymology, K.P. Robert, Editor. Academic Press. pp. 63鈥?5
    24. Friedemann MN, Robinson SW, Gerhardt GA (1996) o-phenylenediamine-modified carbon fiber electrodes for the detection of nitric oxide. Anal Chem 68:2621鈥?628
    25. Bedioui F, Villeneuve N (2003) Electrochemical nitric oxide sensors for biological samples - principle, selected examples and applications. Electroanal 15:5鈥?8
    26. Brown FO, Finnerty NJ, Lowry JP (2009) Nitric oxide monitoring in brain extracellular fluid: characterisation of nafion (R)-modified Pt electrodes in vitro and in vivo. Analyst 134:2012鈥?020
    27. Prakash R, Srivastava RC, Seth PK (2001) Polycarbazole modified electrode; nitric oxide sensor. Polym Bull 46:487鈥?90
    28. Kitamura Y, Uzawa T, Oka K, Komai Y, Ogawa H, Takizawa N, Kobayashi H, Tanishita K (2000) Microcoaxial electrode for in vivo nitric oxide measurement. Anal Chem 72:2957鈥?962
    29. Shin JH, Privett BJ, Kita JM, Wightman RM, Schoenfisch MH (2008) Fluorinated xerogel-derived microelectrodes for amperometric nitric oxide sensing. Anal Chem 80:6850鈥?859
    30. Lee Y, Kim J (2007) Simultaneous electrochemical detection of nitric oxide and carbon monoxide generated from mouse kidney organ tissues. Anal Chem 79:7669鈥?675
    31. Diab N, Schuhmann W (2001) Electropolymerized manganese porphyrin/polypyrrole films as catalytic surfaces for the oxidation of nitric oxide. Electrochim Acta 47:265鈥?73
    32. Nyokong T, Vilakazi S (2003) Phthalocyanines and related complexes as electrocatalysts for the detection of nitric oxide. Talanta 61:27鈥?5
    33. Vilakazi SL, Nyokong T (2001) Voltammetric determination of nitric oxide on cobalt phthalocyanine modified microelectrodes. J Electroanal Chem 512:56鈥?3
    34. Francisco Silva J, Griveau S, Richard C, Zagal JH, Bedioui F (2007) Glassy carbon electrodes modified with single walled carbon nanotubes and cobalt phthalocyanine and nickel tetrasulfonated phthalocyanine: highly stable new hybrids with enhanced electrocatalytic performances. Electrochem Commun 9:1629鈥?634
    35. Pereira-Rodrigues N, Albin V, Koudelka-Hep M, Auger V, Pailleret A, Bedioui F (2002) Nickel tetrasulfonated phthalocyanine based platinum microelectrode array for nitric oxide oxidation. Electrochem Commun 4:922鈥?27
    36. Miserere S, Ledru S, Ruill茅 N, Griveau S, Boujtita M, Bedioui F (2006) Biocompatible carbon-based screen-printed electrodes for the electrochemical detection of nitric oxide. Electrochem Commun 8:238鈥?44
    37. Mao L, Yamamoto K, Zhou W, Jin L (2000) Electrochemical nitric oxide sensors based on electropolymerized film of M (salen) with central ions of Fe Co, Cu Mn. Electroanal 12:72鈥?7
    38. Santos VN, Mendonca GL, Freire VN, Holanda AK, Sousa JR, Lopes LG, Ellena J, Correia AN, de Lima-Neto P (2013) Electrochemical and monte Carlo studies of self-assembled trans-[Fe (cyclam) (NCS) 2]鈥?鈥塩omplex ion on gold surface as electrochemical sensor for nitric oxide. Electrochim Acta 91:1鈥?0
    39. Wang YZ, Hu SS (2006) A novel nitric oxide biosensor based on electropolymerization poly (toluidine blue) film electrode and its application to nitric oxide released in liver homogenate. Biosens Bioelectron 22:10鈥?7
    40. Chen XX, Wang Y, Hu SS (2008) A novel amperometric sensor for the determination of nitric oxide, and its application in rat liver cells. Microchim Acta 161:255鈥?63
    41. Chen XX, Xie PP, Tian QL, Hu SS (2006) Amperometric nitric oxide sensor based on poly (thionine)/nafion-modified electrode and its application in monitoring nitric oxide release from rat kidney. Anal Lett 39:1321鈥?332
    42. Peng YF, Ji YP, Zheng DY, Hu SS (2009) In situ monitoring of nitric oxide release from rat kidney at poly (eosin b)-ionic liquid composite-based electrochemical sensors. Sens Actuators B-Chem 137:656鈥?61
    43. Zheng DY, Hu CG, Peng YF, Yue WQ, Hu SS (2008) Noncovalently functionalized water-soluble multiwall-nanotubes through azocarmine B and their application in nitric oxide sensor. Electrochem Commun 10:90鈥?4
    44. Lu Q, Hu SS, Pang DW, He ZK (2005) Direct electrochemistry and electrocatalysis with hemoglobin in water-soluble quantum dots film on glassy carbon electrode. Chem Commun 2584鈥?585
    45. Liu XJ, Shang LB, Pang JT, Li GX (2003) A reagentless nitric oxide biosensor based on haemoglobin/polyethyleneimine film. Biotechnol Appl Biochem 38:119鈥?22
    46. Wang F, Chen X, Xu HS, Gao Z (2007) Enhanced electron transfer for hemoglobin entrapped in a cationic Gemini surfactant films on electrode and the fabrication of nitric oxide biosensor. Biosens Bioelectron 23:176鈥?82
    47. Fan C, Liu X, Pang J, Li G, Scheer H (2004) Highly sensitive voltammetric biosensor for nitric oxide based on its high affinity with hemoglobin. Anal Chim Acta 523:225鈥?28
    48. Xuan GS, Jung S, Kim S (2004) Electrocatalytic reduction of nitric oxide by cytochrome P450-modified gold electrodes. Bull Korean Chem Soc 25:165鈥?66
    49. Shang LB, Liu XJ, Fan CH, Li GX (2004) A nitric oxide biosensor based on horseradish peroxidase/kieselguhr co-modified pyrolytic graphite electrode. Ann Chim 94:457鈥?62
    50. Agasti SS, Rana S, Park MH, Kim CK, You CC, Rotello VM (2010) Nanoparticles for detection and diagnosis. Adv Drug Deliv Rev 62:316鈥?28
    51. Asefa T, Duncan CT, Sharma KK (2009) Recent advances in nanostructured chemosensors and biosensors. Analyst 134:1980鈥?990
    52. Merkoci A (2007) Nanobiomaterials in electroanalysis. Electroanal 19:739鈥?41
    53. Katz E, Willner I, Wang J (2004) Electroanalytical and bioelectroanalytical systems based on metal and semiconductor nanoparticles. Electroanal 16:19鈥?4
    54. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes (2005) chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025鈥?102
    55. Wang F, Hu S (2009) Electrochemical sensors based on metal and semiconductor nanoparticles. Microchim Acta 165:1鈥?2
    56. Welch CM, Compton RG (2006) The use of nanoparticles in electroanalysis: a review. Anal Bioanal Chem 384:601鈥?19
    57. Cheng W, Dong S, Wang E (2002) Colloid chemical approach to nanoelectrode ensembles with highly controllable active area fraction. Anal Chem 74:3599鈥?604
    58. Yang W, Ratinac KR, Ringer SP, Thordarson P, Gooding JJ, Braet F (2010) Carbon nanomaterials in biosensors: should You Use nanotubes or graphene? Angew Chem Int Ed 49:2114鈥?138
    59. Jacobs CB, Peairs MJ, Venton BJ (2010) Review: carbon nanotube based electrochemical sensors for biomolecules. Anal Chim Acta 662:105鈥?27
    60. Qureshi A, Kang WP, Davidson JL, Gurbuz Y (2009) Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications. Diam Relat Mater 18:1401鈥?420
    61. Zhou M, Zhai Y, Dong S (2009) Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal Chem 81:5603鈥?613
    62. Ajayan P, Zhou O (2001) Applications of carbon nanotubes. In: Carbon Nanotubes M, Dresselhaus G (eds) Dresselhaus, and P. Avouris, Editors. Springer Berlin Heidelberg, pp 391鈥?25
    63. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56鈥?8
    64. Cai CX, Chen J, Bao JC, Lu TH (2004) Applications of carbon nanotubes in analytical chemistry. Chin J Anal Chem 32:381鈥?87
    65. Gong KP, Yan YM, Zhang MN, Su L, Xiong SX, Mao LQ (2005) Electrochemistry and electroanalytical applications of carbon nanotubes: a review. Anal Sci 21:1383鈥?393
    66. Li NQ, Wang JX, Li MX (2003) Electrochemistry at carbon nanotube electrodes. Rev Anal Chem 22:19鈥?3
    67. Varghese SH, Nair R, Nair BG, Hanajiri T, Maekawa T, Yoshida Y, Kumar DS (2010) Sensors based on carbon nanotubes and their applications: a review. Curr Nanosci 6:331鈥?46
    68. Long RQ, Yang RT (2001) Carbon nanotubes as a superior sorbent for nitrogen oxides. Ind Eng Chem Res 40:4288鈥?291
    69. Kauffman DR, Star A (2008) Carbon nanotube gas and vapor sensors. Angew Chem Int Ed 47:6550鈥?570
    70. Wu FH, Zhao GC, Wei XW (2002) Electrocatalytic oxidation of nitric oxide at multi-walled carbon nanotubes modified electrode. Electrochem Commun 4:690鈥?94
    71. Xia T, Bi H, Shi K (2010) Electrochemical investigation of NO at single-wall carbon nanotubes modified electrodes. J Chem Sci 122:401鈥?08
    72. Li CM, Zang J, Zhan D, Chen W, Sun CQ, Teo AL, Chua Y, Lee V, Moochhala S (2006) Electrochemical detection of nitric oxide on a SWCNT/RTIL composite gel microelectrode. Electroanal 18:713鈥?18
    73. Wang Y, Li Q, Hu S (2005) A multiwall carbon nanotubes film-modified carbon fiber ultramicroelectrode for the determination of nitric oxide radical in liver mitochondria. Bioelectrochemistry 65:135鈥?42
    74. Kan K, Xia TL, Yang Y, Bi HM, Fu HG, Shi KY (2010) Functionalization of multi-walled carbon nanotube for electrocatalytic oxidation of nitric oxide. J Appl Electrochem 40:593鈥?99
    75. Malinski T, Taha Z (1992) Nitric oxide release from a single cell measured in situ by a porphyrinic-based microsensor. Nature 358:676鈥?78
    76. Bedioui F, Trevin S, Albin V, Guadalupe M, Villegas G, Devynck J (1997) Design and characterization of chemically modified electrodes with iron (III) porphyrinic-based polymers: study of their reactivity toward nitrites and nitric oxide in aqueous solution. Anal Chim Acta 341:177鈥?85
    77. Hayon J, Ozer D, Rishpon J, Bettelheim A (1994) Spectroscopic and electrochemical response to nitrogen monoxide of a cationic iron porphyrin immobilized in nafion-coated electrodes or membranes. J Chem Soc, Chem Commun 619鈥?20
    78. Leung E, Cragg PJ, O鈥橦are D, O'Shea M (1996) A novel in vivo nitric oxide sensor. Chem Commun 23鈥?4
    79. Yan Y, Yao PP, Mu Q, Wang L, Mu J, Li XQ, Kang SZ (2011) Electrochemical behavior of amino-modified multi-walled carbon nanotubes coordinated with cobalt porphyrin for the oxidation of nitric oxide. Appl Surf Sci 258:58鈥?3
    80. Tu W, Lei J, Ju H (2008) Noncovalent nanoassembly of porphyrin on single-walled carbon nanotubes for electrocatalytic reduction of nitric oxide and oxygen. Electrochem Commun 10:766鈥?69
    81. Zhao L, Zhu S, Zhou J (2012) A novel amperometric nitric oxide sensor based on imprinted microenvironments for controlling metal coordination. Sens Actuators B 171鈥?72:563鈥?71
    82. Peng Y, Ji Y, Zheng D, Hu S (2009) In situ monitoring of nitric oxide release from rat kidney at poly (eosin b)-ionic liquid composite-based electrochemical sensors. Sens Actuators, B 137:656鈥?61
    83. Santos RM, Rodrigues MS, Laranjinha J, Barbosa RM (2013) Biomimetic sensor based on hemin/carbon nanotubes/chitosan modified microelectrode for nitric oxide measurement in the brain. Biosens Bioelectron 44:152鈥?59
    84. Li P, Ding Y, Lu Z, Li Y, Zhu X, Zhou Y, Tang Y, Chen Y, Cai C, Lu T (2013) Direct electrochemistry of hemoglobin immobilized on the water-soluble phosphonate functionalized multi-walled carbon nanotubes and its application to nitric oxide biosensing. Talanta 115:228鈥?34
    85. Zhang L, Zhao GC, Wei XW, Yang ZS (2005) A nitric oxide biosensor based on myoglobin adsorbed on multi鈥恮alled carbon nanotubes. Electroanal 17:630鈥?34
    86. Wepasnick KA, Smith BA, Schrote KE, Wilson HK, Diegelmann SR, Fairbrother DH (2011) Surface and structural characterization of multi-walled carbon nanotubes following different oxidative treatments. Carbon 49:24鈥?6
    87. Shao Y, Wang J, Wu H, Liu J, Aksay IA, Lin Y (2010) Graphene based electrochemical sensors and biosensors: a review. Electroanal 22:1027鈥?036
    88. Pumera M, Ambrosi A, Bonanni A, Chng ELK, Poh HL (2010) Graphene for electrochemical sensing and biosensing. Trends Anal Chem 29:954鈥?65
    89. Choi W, Lahiri I, Seelaboyina R, Kang YS (2010) Synthesis of graphene and its applications: a review. Crit Rev Solid State 35:52鈥?1
    90. Allen MJ, Tung VC, Kaner RB (2009) Honeycomb carbon: a review of graphene. Chem Rev 110:132鈥?45
    91. Dikin DA, Stankovich S, Zimney EJ, Piner RD, Dommett GH, Evmenenko G, Nguyen ST, Ruoff RS (2007) Preparation and characterization of graphene oxide paper. Nature 448:457鈥?60
    92. Park S, Ruoff RS (2009) Chemical methods for the production of graphenes. Nat Nanotechnol 4:217鈥?24
    93. Wu JF, Xu MQ, Zhao GC (2010) Graphene-based modified electrode for the direct electron transfer of cytochrome c and biosensing. Electrochem Commun 12:175鈥?77
    94. Wen W, Chen W, Ren QQ, Hu XY, Xiong HY, Zhang XH, Wang SF, Zhao YD (2012) A highly sensitive nitric oxide biosensor based on hemoglobin鈥揷hitosan/graphene鈥揾exadecyltrimethylammonium bromide nanomatrix. Sens Actuators, B 166鈥?67:444鈥?50
    95. Dang XP, Zheng JO, Hu CG, Wang SF, Hu SS (2013) Hemoglobin biosensor based on reduced graphite oxide modified gold electrode array printed on paper. Chem Sens 3:17
    96. Ng SR, Guo CX, Li CM (2011) Highly Sensitive Nitric Oxide Sensing Using Three-Dimensional Graphene/Ionic Liquid Nanocomposite. Electroanal 23:442鈥?48
    97. Dreyer DR, Park S, Bielawski CW, Ruoff RS (2010) The chemistry of graphene oxide. Chem Soc Rev 39:228鈥?40
    98. McAllister MJ, Li JL, Adamson DH, Schniepp HC, Abdala AA, Liu J, Herrera-Alonso M, Milius DL, Car R, Prud鈥檋omme RK (2007) Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem Mater 19:4396鈥?404
    99. Schniepp HC, Li J-L, McAllister MJ, Sai H, Herrera-Alonso M, Adamson DH, Prud鈥檋omme RK, Car R, Saville DA, Aksay IA (2006) Functionalized single graphene sheets derived from splitting graphite oxide. J Phys Chem B 110:8535鈥?539
    100. Guo CX, Ng SR, Khoo SY, Zheng X, Chen P, Li CM (2012) RGD-peptide functionalized graphene biomimetic live-cell sensor for real-time detection of nitric oxide molecules. ACS Nano 6:6944鈥?951
    101. Sherigara BS, Kutner W, D鈥橲ouza F (2003) Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanal 15:753鈥?72
    102. Zhou M, Guo J, Guo LP, Bai J (2008) Electrochemical sensing platform based on the highly ordered mesoporous carbon鈥夆垝鈥塮ullerene system. Anal Chem 80:4642鈥?650
    103. Zhang P, Zhao GC, Wei XW (2005) Electrocatalytic oxidation of nitric oxide on an electrode modified with fullerene films. Microchim Acta 149:223鈥?28
    104. Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T (2005) Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 109:13857鈥?3870
    105. Rothrock AR, Donkers RL, Schoenfisch MH (2005) Synthesis of nitric oxide-releasing gold nanoparticles. J Am Chem Soc 127:9362鈥?363
    106. Polizzi MA, Stasko NA, Schoenfisch MH (2007) Water-soluble nitric oxide-releasing gold nanoparticles. Langmuir 23:4938鈥?943
    107. Caruso EB, Petralia S, Conoci S, Giuffrida S, Sortino S (2007) Photodelivery of nitric oxide from water-soluble platinum nanoparticles. J Am Chem Soc 129:480鈥?81
    108. Thangavel S, Ramaraj R (2008) Polymer membrane stabilized gold nanostructures modified electrode and its application in nitric oxide detection. J Phys Chem C 112:19825鈥?9830
    109. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293鈥?46
    110. Jain PK, Huang X, El-Sayed IH, El-Sayed MA (2007) Review of some interesting surface plasmon resonance-enhanced properties of noble metal nanoparticles and their applications to biosystems. Plasmonics 2:107鈥?18
    111. Kannan P, John SA (2010) Highly sensitive electrochemical determination of nitric oxide using fused spherical gold nanoparticles modified ITO electrode. Electrochim Acta 55:3497鈥?503
    112. Yu A, Liang Z, Cho J, Caruso F (2003) Nanostructured electrochemical sensor based on dense gold nanoparticle films. Nano Lett 3:1203鈥?207
    113. Vinu Mohan AM, Aswini KK, Biju VM (2014) Electrochemical codeposition of gold particle鈥損oly (2-(2-pyridyl) benzimidazole) hybrid film on glassy carbon electrode for the electrocatalytic oxidation of nitric oxide. Sens Actuators, B 196:406鈥?12
    114. Zhang J, Oyama M (2005) Gold nanoparticle arrays directly grown on nanostructured indium tin oxide electrodes: characterization and electroanalytical application. Anal Chim Acta 540:299鈥?06
    115. Li YJ, Liu C, Yang MH, He Y, Yeung ES (2008) Large-scale self-assembly of hydrophilic gold nanoparticles at oil/water interface and their electro-oxidation for nitric oxide in solution. J Electroanal Chem 622:103鈥?08
    116. Zhu M, Liu M, Shi G, Xu F, Ye X, Chen J, Jin L, Jin J (2002) Novel nitric oxide microsensor and its application to the study of smooth muscle cells. Anal Chim Acta 455:199鈥?06
    117. Dang XP, Hu CG, Wang YK, Hu SS (2011) Gold nanoparticle film grown on quartz fiber and its application as a microsensor of nitric oxide. Sens Actuators, B 160:260鈥?65
    118. Yap CM, Xu GQ, Ang SG (2012) Amperometric nitric oxide sensor based on nanoporous platinum phthalocyanine modified electrodes. Anal Chem 85:107鈥?13
    119. Wang S, Lin X (2005) Electrodeposition of Pt鈥揊e (III) nanoparticle on glassy carbon electrode for electrochemical nitric oxide sensor. Electrochim Acta 50:2887鈥?891
    120. Xian YZ, Zhang W, Xue J, Ying XY, Jin LT, Jin JY (2000) Measurement of nitric oxide released in the rat heart with an amperometric microsensor. Analyst 125:1435鈥?439
    121. Wang H, Huang Y, Tan Z, Hu X (2004) Fabrication and characterization of copper nanoparticle thin-films and the electrocatalytic behavior. Anal Chim Acta 526:13鈥?7
    122. Zhang G, Liu M (2000) Effect of particle size and dopant on properties of SnO2-based gas sensors. Sens Actuators, B 69:144鈥?52
    123. Cabot A, Marsal A, Arbiol J, Morante J (2004) Bi2O3 as a selective sensing material for NO detection. Sens Actuators, B 99:74鈥?9
    124. Peter Martin L, Quoc Pham A, Glass RS (2003) Effect of Cr2O3 electrode morphology on the nitric oxide response of a stabilized zirconia sensor. Sens Actuators, B 96:53鈥?0
    125. Sun C, Maduraiveeran G, Dutta P (2013) Nitric oxide sensors using combination of p- and n-type semiconducting oxides and its application for detecting NO in human breath. Sens Actuators, B 186:117鈥?25
    126. Liu CC, Li JH, Chang CC, Chao YC, Meng HF, Hung CH, Meng TC (2009) Selective real-time nitric oxide detection by functionalized zinc oxide. J Phys D Appl Phys 42:155105
    127. Lin CY, Chen JG, Feng WY, Lin CW, Huang JW, Tunney JJ, Ho KC (2011) Using a TiO2/ZnO double-layer film for improving the sensing performance of ZnO based NO gas sensor. Sens Actuators, B 157:361鈥?67
    128. He Q, Zheng D, Hu S (2009) Development and application of a nano-alumina based nitric oxide sensor. Microchim Acta 164:459鈥?64
    129. Wang YZ, Li CY, Hu SS (2006) Electrocatalytic oxidation of nitric oxide at nano-TiO2/Nafion composite film modified glassy carbon electrode. J Solid State Electron 10:383鈥?88
    130. Zhang L, Ni Y, Wang X, Zhao G (2010) Direct electrocatalytic oxidation of nitric oxide and reduction of hydrogen peroxide based on 伪-Fe2O3 nanoparticles-chitosan composite. Talanta 82:196鈥?01
    131. Sj K, Jung H, Lee C, Kim MH, Lee Y (2014) Biological application of RuO2 nanorods grown on a single carbon fiber for the real-time direct nitric oxide sensing. Sens Actuators, B 191:298鈥?04
    132. Ajayan PM, Schadler LS, Braun PV (2006) Nanocomposite science and technology: John Wiley & Sons
    133. Abdelwahab AA, Koh WCA, Noh HB, Shim YB (2010) A selective nitric oxide nanocomposite biosensor based on direct electron transfer of microperoxidase: removal of interferences by co-immobilized enzymes. Biosens Bioelectron 26:1080鈥?086
    134. Zhang L, Fang Z, Zhao GC, Wei XW (2008) Electrodeposited platinum nanoparticles on the multi-walled carbon nanotubes and its electrocatalytic for nitric oxide. Int J Electrochem Sci 3:746鈥?54
    135. Wang F, Chen XW, Chen ZL (2011) Eletrodeposited nickel oxide on a film of carbon nanotubes for monitoring nitric oxide release from rat kidney and drug samples. Microchim Acta 173:65鈥?2
    136. Deng X, Wang F, Chen Z (2010) A novel electrochemical sensor based on nano-structured film electrode for monitoring nitric oxide in living tissues. Talanta 82:1218鈥?224
    137. Ting SL, Guo CX, Leong KC, Kim D-H, Li CM, Chen P (2013) Gold nanoparticles decorated reduced graphene oxide for detecting the presence and cellular release of nitric oxide. Electrochim Acta 111:441鈥?46
    138. Li W, Geng X, Guo Y, Rong J, Gong Y, Wu L, Zhang X, Li P, Xu J, Cheng G (2011) Reduced graphene oxide electrically contacted graphene sensor for highly sensitive nitric oxide detection. ACS Nano 5:6955鈥?961
    139. Milsom EV, Novak J, Oyama M, Marken F (2007) Electrocatalytic oxidation of nitric oxide at TiO2鈥揂u nanocomposite film electrodes. Electrochem Commun 9:436鈥?42
    140. Gutierrez AP, Griveau S, Richard C, Pailleret A, Granados SG, Bedioui F (2009) Hybrid Materials from Carbon Nanotubes, Nickel Tetrasulfonated Phthalocyanine and Thin Polymer Layers for the Selective Electrochemical Activation of Nitric Oxide in Solution. Electroanal 21:2303鈥?310
    141. Zheng DY, Liu XJ, Zhou D, Hu SS (2012) Sensing of nitric oxide using a glassy carbon electrode modified with an electrocatalytic film composed of dihexadecyl hydrogen phosphate, platinum nanoparticles, and acetylene black. Microchim Acta 176:49鈥?5
  • 刊物类别:Chemistry and Materials Science
  • 刊物主题:Chemistry
    Analytical Chemistry
    Inorganic Chemistry
    Physical Chemistry
    Characterization and Evaluation Materials
    Monitoring, Environmental Analysis and Environmental Ecotoxicology
  • 出版者:Springer Wien
  • ISSN:1436-5073
文摘
Electrochemical sensing has been demonstrated to represent an efficient way to quantify nitric oxide (NO) in challenging physiological environments. A sensing interface based on nanomaterials opens up new opportunities and broader prospects for electrochemical NO sensors. This review (with 141 refs.) gives a general view of recent advances in the development of electrochemical sensors based on nanomaterials. It is subdivided into sections on (i) carbon derived nanomaterials (such as carbon nanotubes, graphenes, fullerenes), (ii) metal nanoparticles (including gold, platinum and other metallic nanoparticles); (iii) semiconductor metal oxide nanomaterials (including the oxides of titanium, aluminum, iron, and ruthenium); and finally (iv) nanocomposites (such as those formed from carbon nanomaterials with nanoparticles of gold, platinum, NiO or TiO2). The various strategies are discussed, and the advances of using nanomaterials and the trends in NO sensor technology are outlooked in the final section. Figure This review gives a general view of recent advances in the development of NO electrochemical sensors based on different nanomaterials, including carbon derived nanomaterials, metal nanoparticles, semiconductor nanomaterials, and nanocomposites. The trends in NO sensor nanotechnology are outlooked.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700