Regional precipitation trend analysis at the Langat River Basin, Selangor, Malaysia
详细信息    查看全文
  • 作者:Narges Palizdan (1)
    Yashar Falamarzi (1)
    Yuk Feng Huang (2)
    Teang Shui Lee (1)
    Abdul Halim Ghazali (1)
  • 刊名:Theoretical and Applied Climatology
  • 出版年:2014
  • 出版时间:August 2014
  • 年:2014
  • 卷:117
  • 期:3-4
  • 页码:589-606
  • 全文大小:5,013 KB
  • 参考文献:1. Adamowski K, Bougadis J (2003) Detection of trends in annual extreme rainfall. Hydrol Process 17(18):3547-560. doi:10.1002/hyp.1353 CrossRef
    2. Ahani H, Kherad M, Kousari MR, Rezaeian-Zadeh M, Karampour MA, Ejraee F, Kamali S (2012) An investigation of trends in precipitation volume for the last three decades in different regions of Fars province, Iran. Theor Appl Climatol 109:361-82. doi:10.1007/s00704-011-0572-z CrossRef
    3. Basistha A, Arya D, Goel N (2009) Analysis of historical changes in rainfall in the Indian Himalayas. Int J Climatol 572:555-72 CrossRef
    4. Birsan MV, Molnar P, Burlando P, Pfaundler M (2005) Streamflow trends in Switzerland. J Hydrol 314:312-29. doi:10.1016/j.jhydrol.2005.06.008 CrossRef
    5. Bonaccorso B, Cancelliere A, Rossi G (2005) Detecting trends of extreme rainfall series in Sicily. Adv Geosci 2:7-1. doi:10.5194/adgeo-2-7-2005 CrossRef
    6. Caloiero T, Coscarelli R, Ferrari E, Mancini M (2011) Trend detection of annual and seasonal rainfall in Calabria (Southern Italy). Int J Climato l 31:44-6. doi:10.1002/joc.2055 CrossRef
    7. Cannarozzo M, Noto LV, Viola F (2006) Spatial distribution of rainfall trends in Sicily (1921-000). Phys Chem Earth, Parts A/B/C 31:1201-211. doi:10.1016/j.pce.2006.03.022 CrossRef
    8. Cheung W, Senay G, Singh A (2008) Trends and spatial distribution of annual and seasonal rainfall in Ethiopia. Int J Atmos Environ. doi:10.1002/joc
    9. Cunderlik J, Burn D (2004) Linkages between regional trends in monthly maximum flows and selected climatic variables. J Hydrol Eng 9(4):246-56 CrossRef
    10. Department of Irrigation and Drainage Malaysia (2012) Hydrological data: rainfall records for west Malaysia 1970-012 [data file]. Location: Water Resources Management and Hydrology Division. Department of Irrigation and Drainage, Kuala Lumpur
    11. Douglas EM, Vogel RM, Kroll CN (2000) Trends in floods and low flows in the United States: impact of spatial correlation. J Hydrol 240:90-05 CrossRef
    12. Hamed KH (2008) Trend detection in hydrologic data: the Mann–Kendall trend test under the scaling hypothesis. J Hydrol 349:350-63 CrossRef
    13. Hamed K, Rao AR (1998) A modified Mann-Kendall trend test for autocorrelated data. J Hydrol 204:182-96. doi:10.1016/S0022-1694(97)00125-X CrossRef
    14. Helsel DR, Hirsch RM (1992) Statistical methods in water resources. Elsevier, New York, p 548
    15. Hirsch RM, Slack JR, Smith RA (1982) Techniques of trend analysis for monthly water quality data. Water Resour Res 18:107-21. doi:10.1029/WR018i001p00107 CrossRef
    16. Karpouzos D, Kavalieratou S, Babajimopoulos C (2010) Trend analysis of precipitation data in Pieria Region (Greece). Eur Water 30:31-0
    17. Lu GY, Wong DW (2008) An adaptive inverse-distance weighting spatial interpolation technique. Comput Geosci 34(9):1044-055. doi:10.1016/j.cageo.2007.07.010 CrossRef
    18. Malaysia Meteorological Department (2012) Rainfall records for Selangor State Malaysia 1970-012 [data file]. Location: Record unit. Malaysia Meteorological Department, Kuala Lumpur
    19. Novotny EV, Stefan HG (2007) Stream flow in Minnesota: indicator of climate change. J Hydrol 334:319-33. doi:10.1016/j.jhydrol.2006.10.011 CrossRef
    20. Oguntunde PG, Abiodun BJ, Lischeid G (2011) Rainfall trends in Nigeria, 1901-000. J Hydrol 411:207-18. doi:10.1016/j.jhydrol.2011.09.037 CrossRef
    21. Partal T, Kahya E (2006) Trend analysis in Turkish precipitation data. Hydrol Process 20:2011-026. doi:10.1002/hyp.5993 CrossRef
    22. Sadri S, Madsen H, Mikkelsen PS, Burn DH (2009) Analysis of extreme rainfall trends in Denmark. In: Proceedings of the 33rd IAHR congress: water engineering for a sustainable environment, Vancouver, Canada, 9-4 August. International Association of Hydraulic Engineering and Research (IAHR), Madrid, pp 1731-738
    23. Serrano A, Mateos VL, Garcia JA (1999) Trend analysis of monthly precipitation over the Iberian peninsula for the period 1921-995. Phys Chem Earth, Part B: Hydrol, Ocean Atmos 24:85-0. doi:10.1016/S1464-1909(98)00016-1 CrossRef
    24. Yue S, Hashino M (2003) Long term trends of annual and monthly precipitation in Japan 1. J Am Water Resour Assoc 39(3):587-96. doi:10.1111/j.1752-1688.2003.tb03677.x CrossRef
    25. Yue S, Wang CY (2002) Regional streamflow trend detection with consideration of both temporal and spatial correlation. Int J Climatol 22:933-46. doi:10.1002/joc.781 CrossRef
    26. Zoubi M, Rawi M (2008) An efficient approach for computing silhouette coefficients. J Comput Sci 4(3):252-55. doi:10.3844/jcssp.2008.252.255 CrossRef
  • 作者单位:Narges Palizdan (1)
    Yashar Falamarzi (1)
    Yuk Feng Huang (2)
    Teang Shui Lee (1)
    Abdul Halim Ghazali (1)

    1. Faculty of Engineering, Universiti Putra Malaysia, 43400, UPM Serdang, Selangor Darul Ehsan, Malaysia
    2. Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kuala Lumpur, Malaysia
  • ISSN:1434-4483
文摘
Various hydrological and meteorological variables such as rainfall and temperature have been affected by global climate change. Any change in the pattern of precipitation can have a significant impact on the availability of water resources, agriculture, and the ecosystem. Therefore, knowledge on rainfall trend is an important aspect of water resources management. In this study, the regional annual and seasonal precipitation trends at the Langat River Basin, Malaysia, for the period of 1982-011 were examined at the 95?% level of significance using the regional average Mann–Kendall (RAMK) test and the regional average Mann–Kendall coupled with bootstrap (RAMK–bootstrap) method. In order to identify the homogeneous regions respectively for the annual and seasonal scales, firstly, at-site mean total annual and separately at-site mean total seasonal precipitation were spatialized into 5?km?×-?km grids using the inverse distance weighting (IDW) algorithm. Next, the optimum number of homogeneous regions (clusters) is computed using the silhouette coefficient approach. Next, the homogeneous regions were formed using the K-mean clustering method. From the annual scale perspective, all three regions showed positive trends. However, the application of two methods at this scale showed a significant trend only in the region AC1. The region AC2 experienced a significant positive trend using only the RAMK test. On a seasonal scale, all regions showed insignificant trends, except the regions I1C1 and I1C2 in the Inter-Monsoon 1 (INT1) season which experienced significant upward trends. In addition, it was proven that the significance of trends has been affected by the existence of serial and spatial correlations.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700