Terrestrial runoff boosts phytoplankton in a Mediterranean coastal lagoon, but these effects do not propagate to higher trophic levels
详细信息    查看全文
  • 作者:A. Liess ; O. Rowe ; S. N. Francoeur ; J. Guo ; K. Lange ; A. Schröder…
  • 关键词:Bacteria ; Dissolved organic carbon (DOC) ; Mesocosm experiment ; Phytoplankton ; Nutrient subsidy ; Terrestrial subsidy
  • 刊名:Hydrobiologia
  • 出版年:2016
  • 出版时间:February 2016
  • 年:2016
  • 卷:766
  • 期:1
  • 页码:275-291
  • 全文大小:853 KB
  • 参考文献:Almeda, R., A. M. Messmer, N. Sampedro & L. A. Gosselin, 2011. Feeding rates and abundance of marine invertebrate planktonic larvae under harmful algal bloom conditions off Vancouver island. Harmful Algae 10: 194–206.CrossRef
    APHA, 1998. Standard methods for the examination of water and waste water. American Public Health Association, Washington D.C.
    Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyerreil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 19: 257–263.CrossRef
    Berglund, J., U. Müren, U. Båmstedt & A. Andersson, 2007. Efficiency of a phytoplankton-based and a bacteria-based food web in a pelagic marine system. Limnology and Oceanography 52: 121–131.CrossRef
    Blomqvist, P., M. Jansson, S. Drakare, A. K. Bergström & L. Brydsten, 2001. Effects of additions of DOC on pelagic biota in a clearwater system: results from a whole lake experiment in northern Sweden. Microbial Ecology 42: 383–394.PubMed CrossRef
    Bryhn, A. C., H. Ragnarsson Stabo & J. Olsson, 2013. Modelling the biomass of functional groups of fish in an archipelagobay of the Baltic Sea. Ecological Modelling 269: 86–97.CrossRef
    Calbert, A., 2008. The trophic role of microzooplankton in marine systems. ICES Journal of Marine Science 65: 325–331.CrossRef
    Carlotti, F., D. Bonnet & C. Halsband-Lenk, 2007. Development and growth rates of Centropages typicus. Progress in Oceanography 72: 164–194.CrossRef
    Carpenter, S. R., J. J. Cole, J. R. Hodgson, J. F. Kitchell, M. L. Pace, D. Bade, K. L. Cottingham, T. E. Essington, J. N. Houser & D. E. Schindler, 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecological Monographs 71: 163–186.CrossRef
    Carrasco, N. K., R. Perssinotto & S. Jones, 2013. Turbidity effects on feeding and mortality of the copepod Acartiella natalensis (Connell Grindley, 1974) In the St Lucia Estuary, South Africa. Journal of Experimental Marine Biology and Ecology 446: 45–51.CrossRef
    Demers, S., S. Roy, R. Gagnon & C. Vignault, 1991. Rapid light-induced-changes in cell fluorescence and in xanthophyll-cycle pigments of Alexandrinum axcavatum (Dinophyceae) and Thalassiosira pseudonana (Bacillariophyceae) – a photo-protection mechanism. Marine Ecology Progress Series. 76: 185–193.CrossRef
    Dickman, E. M., J. M. Newell, M. J. Gonzáles & M. J. Vanni, 2008. Light, nutrients, and food-chain length constrain planktonic energy transfer efficiency across multiple trophic levels. Proceedings of the National Academy of Science 105: 18408–18412.CrossRef
    Diehl, S., S. Berger & R. Wöhrl, 2005. Flexible nutrient stoichiometry mediates environmental influences on phytoplankton and its abiotic resources. Ecology 86: 2931–2945.CrossRef
    Estes, J. A., J. Terborgh, J. S. Brashares, M. E. Power, J. Berger, W. J. Bond, S. R. Carpenter, T. E. Essington, R. D. Holt, J. B. C. Jackson, R. J. Marquis, L. Oksanen, T. Oksanen, R. T. Paine, E. K. Pikitch, W. J. Ripple, S. A. Sandin, M. Scheffer, T. W. Schoener, J. B. Shurin, A. R. E. Sinclair, M. E. Soule, R. Virtanen & D. A. Wardle, 2011. Trophic downgrading of planet earth. Science 333: 301–306.PubMed CrossRef
    Faithfull, C. L., M. Huss, A. K. Bergström & T. Vrede, 2011. Bottom-up carbon subsidies and top-down predation pressure interact to affect aquatic food web structure. Oikos 120: 311–320.CrossRef
    Faithfull, C., M. Huss, T. Vrede, J. Karlsson & A. K. Bergström, 2012. Transfer of bacterial production based on labile carbon to higher trophic levels in an oligotrophic pelagic system. Canadian Journal of Fisheries and Aquatic Sciences 69: 85–93.CrossRef
    Falkowski, P. G. & J. A. Raven, 2007. Aquatic photosynthesis, 2nd ed. Princeton University Press, Princeton.
    Fouilland, E., A. Trottet, C. Bancon-Montigny, M. Bouvy, E. Le Floc’h, J.-L. Gonzalez, E. Hatey, S. Mas, B. Mostajir, J. Nouguier, D. Pecqueur, E. Rochelle-Newall, C. Rodier, C. Roques, C. Salles, M.-G. Tournoud & F. Vidussi, 2012. Impact of a river flash flood on microbial carbon and nitrogen production in a Mediterranean Lagoon (Thau Lagoon, France). Estuarine, Coastal and Shelf Science 113: 192–204.CrossRef
    Francoeur, S. N., S. T. Rier & S. B. Whorley, 2013. Methods for sampling and analyzing wetland algae. In: T. Anderson, T. et al (ed.), Wetland Techniques. Springer, pp 1-58.
    Goss, R. & T. Jakob, 2010. Regulation and function of xanthophyll cycle-dependent photoprotection in algae. Photosynthesis Research 106: 103–122.PubMed CrossRef
    Guadayol, O., F. Peters, C. Marrasé, J. M. Gasol, C. Roldán, E. Berdalet, R. Massana & A. Sabata, 2009. Episodic meteorological and nutrient-load events as drivers of coastal planktonic ecosystem dynamics: a time-series analysis. Marine Ecology-Progress Series 381: 139–155.CrossRef
    Hellebust, J. A. & J. Lewin, 1977. Heterotrophic nutrition. In Werner, D. (ed.), The Biology of Diatoms. Blackwell Scientific Publications, Oxford: 169–197.
    Horner, R. A., 2002. A Taxonomic Guide to Some Common Marine Phytoplankton. Biopress Limited, Bristol.
    Jackson, J. B. C., M. X. Kirby, W. H. Berger, K. A. Bjorndal, L. W. Botsford, B. J. Bourque, R. H. Bradbury, R. Cooke, J. Erlandson, J. A. Estes, T. P. Hughes, S. Kidwell, C. B. Lange, H. S. Lenihan, J. M. Pandolfi, C. H. Peterson, R. S. Steneck, M. J. Tegner & R. R. Warner, 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science 293: 629–638.PubMed CrossRef
    Jansson, M., 1998. Nutrient limitation and bacteria-phytoplankton interactions in humic lakes. In Hessen, D. O. & L. Tranvik (eds), Aquatic Humic Substances. Springer, Ecology and Biochemistry: 177–194.CrossRef
    Jansson, M., L. Persson, A. D. De Roos, R. I. Jones & L. J. Tranvik, 2007. Terrestial carbon and intraspecific size-variation shape lake ecosystems. Trends in Ecology and Evolution 22: 316–322.PubMed CrossRef
    Jones, R. I., 1992. The influence of humic substances on lacustrine planktonic food-chains. Hydrobiologia 229: 73–91.CrossRef
    Kang, H.-K., 2012. Effects of suspended sediments on reproductive responses of Paracalanus sp. (Copepoda: Calanoida) in the laboratory. Journal of Plankton Research 34: 626–635.CrossRef
    Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Cambridge.CrossRef
    Koichi, A., 2001. Temporal variability and production of Euterpina acutifrons (Copepoda:Harpacticoida) in the Canan´eia Lagoon estuarine system, São Paulo, Brazil. Hydrobiologia 453: 177–187.
    Kyselý, J., S. Begueria, R. Beranova, L. Gaal & J. I. Lopez-Moreno, 2012. Different patterns of climate change scenarios for short-term and multi-day precipitation extremes in the Mediterranean. Global and Planetary Change 98–99: 63–72.CrossRef
    Lefèbure, R., R. Degerman, A. Andersson, S. Larsson, L.-O. Eriksson, U. Båmstedt & P. Byström, 2013. Impacts of elevated terrestrial nutrient loads and temperature on pelagic food-web efficiency and fish production. Global Change Biology 19: 1358–1372.PubMed CrossRef
    Liess, A., M. Quevedo, J. Olsson, T. Vrede, P. Eklöv & H. Hillebrand, 2006. Food web complexity affects stoichiometric and trophic interactions. Oikos 114: 117–125.CrossRef
    Liess, A., C. Faithfull, B. Reichstein, O. Rowe, J. Guo, R. Pete, G. Thomsson, W. Uszko & S. N. Francoeur, 2015. Terrestrial runoff may reduce microbenthic net community productivity by increasing turbidity: a Mediterranean coastal lagoon mesocosm experiment. Hydrobiologia. doi:10.​1007/​s10750-051-2207-3 .
    Lindley, J. A., 1998. Dry weights, carbon and nitrogen content of decapod larvae from the plankton. Journal of the Marine Biological Association of the UNITED Kingdom 78: 341–344.CrossRef
    Milly, P. C. D., R. T. Wetherald, K. A. Dunne & T. L. Delworth, 2002. Increasing risk of great floods in a changing climate. Nature 415: 514–517.PubMed CrossRef
    Menden-Deuer, S. & E. J. Lessard, 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protest plankton. Limnology and Oceanography 45: 569–579.CrossRef
    Pankow, H., 1990. Ostsee-Algenflora. Gustav Fischer Verlag, Jena.
    Pecqueur, D., F. Vidussi, E. Fouilland, E. Le Floc’h, S. Mas, C. Roques, C. Salles, M. G. Tournoud & B. Mostajir, 2011. Dynamics of microbial planktonic food web components during a river flash flood in a Mediterranean coastal lagoon. Hydrobiologia 673: 13–27.CrossRef
    Picot, B., G. Pena, C. Casellas, D. Bondon & J. Bontoux, 1990. Interpretation of the seasonal variations of nutrients in a Mediterranean lagoon: Étang de Thau. Interpretation of the seasonal variations of nutrients in a Mediterranean lagoon: Étang de Thau. Hydrobiologia 207: 105–114.CrossRef
    Pijanowski, B. S., 1973. Salinity corrections for dissolved oxygen measurements. Environmental Science and Technology 7: 957–958.CrossRef
    Postel, L., H. Simon & V. Guiard, 2007. Individual-specific carbon mass determination of zooplankton taxa of the open Baltic Sea basing on length/biomass relationships and conversion factors. Final report (in German). Leibniz Institute of Baltic Sea Research.
    Sanchez, E., C. Gallardo, M. A. Gaertner, A. Arribas & M. Castro, 2004. Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Global and Planetary Change 44: 163–180.CrossRef
    Sandberg, J., A. Andersson, S. Johansson & J. Wikner, 2004. Pelagic food web structure and carbon budget in the northern Baltic Sea: potential importance of terrigenous carbon. Marine Ecology-Progress Series 268: 13–29.CrossRef
    Sommer, U., H. Stibor, A. Katechakis, F. Sommer & T. Hansen, 2002. Pelagic food web configurations at different levels of nutrient richness and their implications for the ratio fish production: primary production. Hydrobiologia 484: 11–20.CrossRef
    Spyropoulou, A., S. Spatharis, G. Papantoniou & G. Tsirtsis, 2013. Potential response to climate change of a semi-arid coastal ecosystem in eastern Mediterranean. Hydrobiologia 705: 87–99.CrossRef
    Stoecker, D. K., M. D. Johnson, C. de Vargas & F. Not, 2009. Acquired phototrophy in aquatic protists. Aquatic Microbial Ecology 57: 279–310.CrossRef
    Tranvik, L. J., 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microbial Ecology 16: 311–322.PubMed CrossRef
    Uye, S., 1982. Length- Weight relationships of important zooplankton from the inland Sea of Japan. Journal of the Oceanographical Society of Japan 38: 149–158.CrossRef
    Vadstein, O., 2000. Heterotrophic, planktonic bacteria and cycling of phosphorus – phosphorus requirements, competitive ability and food web interactions. Advances in Microbial Ecology 16: 115–167.CrossRef
    Vidussi, F., B. Mostajir, E. Fouilland, E. Le Floc’h, J. Nougu, C. Roques, P. Got, D. Thibault-Botha & M. Troussellier, 2011. Effects of experimental warming and increased ultraviolet B radiation on the Mediterranean plankton food web. Limnology and Oceanography 56: 206–218.CrossRef
    Wetzel, R. G. & G. E. Likens, 2000. Limnological Analyses. Springer, New York.CrossRef
  • 作者单位:A. Liess (1) (2)
    O. Rowe (1) (3)
    S. N. Francoeur (4)
    J. Guo (1)
    K. Lange (5) (6)
    A. Schröder (7) (8)
    B. Reichstein (1)
    R. Lefèbure (1) (9)
    A. Deininger (1)
    P. Mathisen (1)
    C. L. Faithfull (1)

    1. Department of Ecology and Environmental Sciences, Umeå Universitet, 901 87, Umeå, Sweden
    2. Laboratoire Ecosystèmes Marins Côtiers, UMR5119 CNRS, Université Montpellier2, IRD, IFREMER, Paris, France
    3. Department of Food and Environmental Sciences, Division of Microbiology and Biotechnology, Viikki Biocenter 1, University of Helsinki, Helsinki, Finland
    4. Department of Biology, Eastern Michigan University, 48197, Ypsilanti, MI, USA
    5. Department of Zoology, University of Otago, P.O. Box 56, Dunedin, 9054, New Zealand
    6. Department of Fish Ecology and Evolution, EAWAG, 6047, Kastanienbaum, Switzerland
    7. Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
    8. Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department of Biology and Ecology of Fishes, Müggelseedamm 310, 12587, Berlin, Germany
    9. Marine Stewardship Council, Marine House, 1 Snow Hill, London, EC1A 2DH, UK
  • 刊物类别:Biomedical and Life Sciences
  • 刊物主题:Life Sciences
    Hydrobiology
    Ecology
  • 出版者:Springer Netherlands
  • ISSN:1573-5117
文摘
Heavy rainfall events causing significant terrestrial runoff into coastal marine ecosystems are predicted to become more frequent with climate change in the Mediterranean. To simulate the effects of soil runoff on the pelagic food web of an oligotrophic Mediterranean coastal lagoon, we crossed soil extract addition (increasing nutrient availability and turbidity) and fish presence in a full factorial design to coastal mesocosms containing a natural pelagic community. Soil extract addition increased both bacteria and phytoplankton biomass. Diatoms however profited most from soil extract addition, especially in the absence of fish. In contrast zooplankton and fish did not profit from soil extract addition. Furthermore, our data indicate that nutrients (instead of light or carbon) limited basal production. Presumed changes in carbon availability are relatively unimportant to primary and secondary production in strongly nutrient limited systems like the Thau Lagoon. We conclude that in shallow Mediterranean coastal ecosystems, heavy rainfall events causing soil runoff will (1) increase the relative abundance of phytoplankton in relation to bacteria and zooplankton, especially in the absence of fish (2) not lead to higher biomass of zooplankton and fish, possibly due to the brevity of the phytoplankton bloom and the slow biomass response of higher trophic levels. Keywords Bacteria Dissolved organic carbon (DOC) Mesocosm experiment Phytoplankton Nutrient subsidy Terrestrial subsidy

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700